Data warehousing

Analysis of issues in data warehousing, with extensive coverage of database management systems and data warehouse appliances that are optimized to query large volumes of data. Related subjects include:

October 13, 2014

Context for Cloudera

Hadoop World/Strata is this week, so of course my clients at Cloudera will have a bunch of announcements. Without front-running those, I think it might be interesting to review the current state of the Cloudera product line. Details may be found on the Cloudera product comparison page. Examining those details helps, I think, with understanding where Cloudera does and doesn’t place sales and marketing focus, which given Cloudera’s Hadoop market stature is in my opinion an interesting thing to analyze.

So far as I can tell (and there may be some errors in this, as Cloudera is not always accurate in explaining the fine details):

In analyzing all this, I’m focused on two particular aspects:

Read more

October 5, 2014

Spark vs. Tez, revisited

I’m on record as noting and agreeing with an industry near-consensus that Spark, rather than Tez, will be the replacement for Hadoop MapReduce. I presumed that Hortonworks, which is pushing Tez, disagreed. But Shaun Connolly of Hortonworks suggested a more nuanced view. Specifically, Shaun tweeted thoughts including:

Tez vs Spark = Apples vs Oranges.

Spark is general-purpose engine with elegant APIs for app devs creating modern data-driven apps, analytics, and ML algos.

Tez is a framework for expressing purpose-built YARN-based DAGs; its APIs are for ISVs & engine/tool builders who embed it

[For example], Hive embeds Tez to convert its SQL needs into purpose-built DAGs expressed optimally and leveraging YARN

That said, I haven’t yet had a chance to understand what advantages Tez might have over Spark in the use cases that Shaun relegates it to.

Related link

October 5, 2014

Streaming for Hadoop

The genesis of this post is that:

Of course, we should hardly assume that what the Hadoop distro vendors favor will be the be-all and end-all of streaming. But they are likely to at least be influential players in the area.

In the parts of the problem that Cloudera emphasizes, the main tasks that need to be addressed are: Read more

September 28, 2014

Some stuff on my mind, September 28, 2014

1. I wish I had some good, practical ideas about how to make a political difference around privacy and surveillance. Nothing else we discuss here is remotely as important. I presumably can contribute an opinion piece to, more or less, the technology publication(s) of my choice; that can have a small bit of impact. But I’d love to do better than that. Ideas, anybody?

2. A few thoughts on cloud, colocation, etc.:

3. As for the analytic DBMS industry: Read more

September 7, 2014

An idealized log management and analysis system — from whom?

I’ve talked with many companies recently that believe they are:

At best, I think such competitive claims are overwrought. Still, it’s a genuinely important subject and opportunity, so let’s consider what a great log management and analysis system might look like.

Much of this discussion could apply to machine-generated data in general. But right now I think more players are doing product management with an explicit conception either of log management or event-series analytics, so for this post I’ll share that focus too.

A short answer might be “Splunk, but with more analytic functionality and more scalable performance, at lower cost, plus numerous coupons for free pizza.” A more constructive and bottoms-up approach might start with:  Read more

August 31, 2014

Notes from a visit to Teradata

I spent a day with Teradata in Rancho Bernardo last week. Most of what we discussed is confidential, but I think the non-confidential parts and my general impressions add up to enough for a post.

First, let’s catch up with some personnel gossip. So far as I can tell:

The biggest change in my general impressions about Teradata is that they’re having smart thoughts about the cloud. At least, Oliver is. All details are confidential, and I wouldn’t necessarily expect them to become clear even in October (which once again is the month for Teradata’s user conference). My main concern about all that is whether Teradata’s engineering team can successfully execute on Oliver’s directives. I’m optimistic, but I don’t have a lot of detail to support my good feelings.

In some quick-and-dirty positioning and sales qualification notes, which crystallize what we already knew before:

Also: Read more

July 23, 2014

Teradata bought Hadapt and Revelytix

My client Teradata bought my (former) clients Revelytix and Hadapt.* Obviously, I’m in confidentiality up to my eyeballs. That said — Teradata truly doesn’t know what it’s going to do with those acquisitions yet. Indeed, the acquisitions are too new for Teradata to have fully reviewed the code and so on, let alone made strategic decisions informed by that review. So while this is just a guess, I conjecture Teradata won’t say anything concrete until at least September, although I do expect some kind of stated direction in time for its October user conference.

*I love my business, but it does have one distressing aspect, namely the combination of subscription pricing and customer churn. When your customers transform really quickly, or even go out of existence, so sometimes does their reliance on you.

I’ve written extensively about Hadapt, but to review:

As for what Teradata should do with Hadapt: Read more

July 15, 2014

The point of predicate pushdown

Oracle is announcing today what it’s calling “Oracle Big Data SQL”. As usual, I haven’t been briefed, but highlights seem to include:

And by the way – Oracle Big Data SQL is NOT “SQL-on-Hadoop” as that term is commonly construed, unless the complete Oracle DBMS is running on every node of a Hadoop cluster.

Predicate pushdown is actually a simple concept:

“Predicate pushdown” gets its name from the fact that portions of SQL statements, specifically ones that filter data, are properly referred to as predicates. They earn that name because predicates in mathematical logic and clauses in SQL are the same kind of thing — statements that, upon evaluation, can be TRUE or FALSE for different values of variables or data.

The most famous example of predicate pushdown is Oracle Exadata, with the story there being:

Oracle evidently calls this “SmartScan”, and says Oracle Big Data SQL does something similar with predicate pushdown into Hadoop.

Oracle also hints at using predicate pushdown to do non-tabular operations on the non-relational systems, rather than shoehorning operations on multi-structured data into the Oracle DBMS, but my details on that are sparse.

Related link

July 14, 2014

21st Century DBMS success and failure

As part of my series on the keys to and likelihood of success, I outlined some examples from the DBMS industry. The list turned out too long for a single post, so I split it up by millennia. The part on 20th Century DBMS success and failure went up Friday; in this one I’ll cover more recent events, organized in line with the original overview post. Categories addressed will include analytic RDBMS (including data warehouse appliances), NoSQL/non-SQL short-request DBMS, MySQL, PostgreSQL, NewSQL and Hadoop.

DBMS rarely have trouble with the criterion “Is there an identifiable buying process?” If an enterprise is doing application development projects, a DBMS is generally chosen for each one. And so the organization will generally have a process in place for buying DBMS, or accepting them for free. Central IT, departments, and — at least in the case of free open source stuff — developers all commonly have the capacity for DBMS acquisition.

In particular, at many enterprises either departments have the ability to buy their own analytic technology, or else IT will willingly buy and administer things for a single department. This dynamic fueled much of the early rise of analytic RDBMS.

Buyer inertia is a greater concern.

A particularly complex version of this dynamic has played out in the market for analytic RDBMS/appliances.

Otherwise I’d say:  Read more

June 18, 2014

Using multiple data stores

I’m commonly asked to assess vendor claims of the kind:

So I thought it might be useful to quickly review some of the many ways organizations put multiple data stores to work. As usual, my bottom line is:

Horses for courses

It’s now widely accepted that different data managers are better for different use cases, based on distinctions such as:

Vendors are part of this consensus; already in 2005 I observed

For all practical purposes, there are no DBMS vendors left advocating single-server strategies.

Vendor agreement has become even stronger in the interim, as evidenced by Oracle/MySQL, IBM/Netezza, Oracle’s NoSQL dabblings, and various companies’ Hadoop offerings.

Multiple data stores for a single application

We commonly think of one data manager managing one or more databases, each in support of one or more applications. But the other way around works too; it’s normal for a single application to invoke multiple data stores. Indeed, all but the strictest relational bigots would likely agree:  Read more

Next Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:


Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.