EAI, EII, ETL, ELT, ETLT

Analysis of data integration products and technologies, especially ones related to data warehousing, such as ELT (Extract/Transform/Load). Related subjects include:

December 5, 2013

Vertica 7

It took me a bit of time, and an extra call with Vertica’s long-time R&D chief Shilpa Lawande, but I think I have a decent handle now on Vertica 7, code-named Crane. The two aspects of Vertica 7 I find most interesting are:

Other Vertica 7 enhancements include:

Overall, two recurring themes in our discussion were:

Read more

October 30, 2013

Glassbeam instantiates a lot of trends

Glassbeam checked in recently, and they turn out to exemplify quite a few of the themes I’ve been writing about. For starters:

Glassbeam basics include:

All Glassbeam customers except one are SaaS/cloud (Software as a Service), and even that one was only offered a subscription (as oppose to perpetual license) price.

So what does Glassbeam’s technology do? Glassbeam says it is focused on “machine data analytics,” specifically for the “Internet of Things”, which it distinguishes from IT logs.* Specifically, Glassbeam sells to manufacturers of complex devices — IT (most of its sales so far ), medical, automotive (aspirational to date), etc. — and helps them analyze “phone home” data, for both support/customer service and marketing kinds of use cases. As of a recent release, the Glassbeam stack can: Read more

October 18, 2013

Entity-centric event series analytics

Much of modern analytic technology deals with what might be called an entity-centric sequence of events. For example:

Analytic questions are asked along the lines “Which sequences of events are most productive in terms of leading to the events we really desire?”, such as product sales. Another major area is sessionization, along with data preparation tasks that boil down to arranging data into meaningful event sequences in the first place.

A number of my clients are focused on such scenarios, including WibiData, Teradata Aster (e.g. via nPath), Platfora (in the imminent Platfora 3), and others. And so I get involved in naming exercises. The term entity-centric came along a while ago, because “user-centric” is too limiting. (E.g., the data may not be about a person, but rather specifically about the actions taken on her mobile device.) Now I’m adding the term event series to cover the whole scenario, rather than the “event sequence(s)” I might appear to have been hinting at above.

I decided on “event series” earlier this week, after noting that:  Read more

September 29, 2013

ClearStory, Spark, and Storm

ClearStory Data is:

I think I can do an interesting post about ClearStory while tap-dancing around the still-secret stuff, so let’s dive in.

ClearStory:

To a first approximation, ClearStory ingests data in a system built on Storm (code name: Stormy), dumps it into HDFS, and then operates on it in a system built on Spark (code name: Sparky). Along the way there’s a lot of interaction with another big part of the system, a metadata catalog with no code name I know of. Or as I keep it straight:

Read more

September 20, 2013

Trends in predictive modeling

I talked with Teradata about a bunch of stuff yesterday, including this week’s announcements in in-database predictive modeling. The specific news was about partnerships with Fuzzy Logix and Revolution Analytics. But what I found more interesting was the surrounding discussion. In a nutshell:

This is the strongest statement of perceived demand for in-database modeling I’ve heard. (Compare Point #3 of my July predictive modeling post.) And fits with what I’ve been hearing about R.

Read more

August 24, 2013

Hortonworks business notes

Hortonworks did a business-oriented round of outreach, talking with at least Derrick Harris and me. Notes  from my call — for which Rob Bearden didn’t bother showing up — include, in no particular order:

In Hortonworks’ view, Hadoop adopters typically start with a specific use case around a new type of data, such as clickstream, sensor, server log, geolocation, or social.  Read more

May 29, 2013

Syncsort extends Hadoop MapReduce

My client Syncsort:

*Perhaps we should question Syncsort’s previous claims of having strong multi-node parallelism already. :)

The essence of the Syncsort DMX-h ETL Edition story is:

More details can be found in a slide deck Syncsort graciously allowed me to post. Read more

April 1, 2013

Some notes on new-era data management, March 31, 2013

Hmm. I probably should have broken this out as three posts rather than one after all. Sorry about that.

Performance confusion

Discussions of DBMS performance are always odd, for starters because:

But in NoSQL/NewSQL short-request processing performance claims seem particularly confused. Reasons include but are not limited to:

MongoDB and 10gen

I caught up with Ron Avnur at 10gen. Technical highlights included: Read more

March 26, 2013

Platfora at the time of first GA

Well-resourced Silicon Valley start-ups typically announce their existence multiple times. Company formation, angel funding, Series A funding, Series B funding, company launch, product beta, and product general availability may not be 7 different “news events”, but they’re apt to be at least 3-4. Platfora, no exception to this rule, is hitting general availability today, and in connection with that I learned a bit more about what they are up to.

In simplest terms, Platfora offers exploratory business intelligence against Hadoop-based data. As per last weekend’s post about exploratory BI, a key requirement is speed; and so far as I can tell, any technological innovation Platfora offers relates to the need for speed. Specifically, I drilled into Platfora’s performance architecture on the query processing side (and associated data movement); Platfora also brags of rendering 100s of 1000s of “marks” quickly in HTML5 visualizations, but I haven’t a clue as to whether that’s much of an accomplishment in itself.

Platfora’s marketing suggests it obviates the need for a data warehouse at all; for most enterprises, of course, that is a great exaggeration. But another dubious aspect of Platfora marketing actually serves to understate the product’s merits — Platfora claims to have an “in-memory” product, when what’s really the case is that Platfora’s memory-centric technology uses both RAM and disk to manage larger data marts than could reasonably be fit into RAM alone. Expanding on what I wrote about Platfora when it de-stealthedRead more

February 13, 2013

It’s hard to make data easy to analyze

It’s hard to make data easy to analyze. While everybody seems to realize this — a few marketeers perhaps aside — some remarks might be useful even so.

Many different technologies purport to make data easy, or easier, to an analyze; so many, in fact, that cataloguing them all is forbiddingly hard. Major claims, and some technologies that make them, include:

*Complex event/stream processing terminology is always problematic.

My thoughts on all this start:  Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.