Cool analytic stories
There are several reasons it’s hard to confirm great analytic user stories. First, there aren’t as many jaw-dropping use cases as one might think. For as I wrote about performance, new technology tends to make things better, but not radically so. After all, if its applications are …
… all that bloody important, then probably people have already been making do to get it done as best they can, even in an inferior way.
Further, some of the best stories are hard to confirm; even the famed beer/diapers story isn’t really true. Many application areas are hard to nail down due to confidentiality, especially but not only in such “adversarial” domains as anti-terrorism, anti-spam, or anti-fraud.
Even so, I have two questions in my inbox that boil down to “What are the coolest or most significant analytics stories out there?” So let’s round up some of what I know. Read more
Categories: Analytic technologies, Google, Health care, Investment research and trading, Predictive modeling and advanced analytics, Scientific research, Telecommunications, Web analytics | 6 Comments |
Thoughts on “data science”
Teradata is paying me to join a panel on “data science” in downtown Boston, Tuesday May 22, at 3:00 pm. A planning phone call led me to jot down a few notes on the subject, which I’m herewith adapting into a blog post.
For starters, I have some concerns about the concepts of data science and data scientist. Too often, the term “data scientist” is used to suggest that one person needs to have strong skills both in analytics and in data management. But in reality, splitting those roles makes perfect sense. Further:
- It may or may not make sense to say that a computer scientist is doing “science”; the term “data scientist” inherits that ambiguity.
- It may or may not make sense to say that a corporate scientist is doing “science”; for example, a petroleum geologist might do very valuable work without making any scientific discoveries. The term “data scientist” inherits that ambiguity too.
- Too often, people use the term big data as if it were something radically new, rather than a continuation of what has been done in large-scale analytic data management for decades. “Data science” has a similar problem.
- The term “data science” sounds as if you need specialized academic training to do it, which isn’t really true.
The leader in raising these issues is probably Neil Raden.
But there’s one respect in which I think the term “data science” is highly appropriate. In conventional science, gathering data is just as much of an accomplishment as analyzing it. Indeed, most Nobel Prizes are given for experimental results. Similarly, if you’re doing data science, you should be thinking hard about how to corral ever more useful data. Techniques include but are not limited to:
- Keeping data you used to throw away. This has driven a lot of growth in relational data warehouses and big bit buckets alike.
- Bribing customers and prospects. Loyalty cards are the paradigmatic example.
- Split testing. The more internet-based users you have, the more tests you can do.
- Storing derived data. That can be as simple as pre-computing the scores from your predictive analytics model, or it can be as complex as running a 50-step sequence of Hadoop jobs.
- Getting data from third parties, for example:
- Supply chain partners (right now this rarely amounts to more than simple BI, but that could change in the future).
- Data vendors of various kinds (e.g. credit bureaus).
- Social media/the internet in general, which also usually involves some kind of service provider.
Categories: Analytic technologies, Data warehousing, Predictive modeling and advanced analytics, Teradata | 4 Comments |
Notes on the analysis of large graphs
This post is part of a series on managing and analyzing graph data. Posts to date include:
- Graph data model basics
- Relationship analytics definition
- Relationship analytics applications
- Analysis of large graphs (this post)
My series on graph data management and analytics got knocked off-stride by our website difficulties. Still, I want to return to one interesting set of issues — analyzing large graphs, specifically ones that don’t fit comfortably into RAM on a single server. By no means do I have the subject figured out. But here are a few notes on the matter.
How big can a graph be? That of course depends on:
- The number of nodes. If the nodes of a graph are people, there’s an obvious upper bound on the node count. Even if you include their houses, cars, and so on, you’re probably capped in the range of 10 billion.
- The number of edges. (Even more important than the number of nodes.) If every phone call, email, or text message in the world is an edge, that’s a lot of edges.
- The typical size of a (node, edge, node) triple. I don’t know why you’d have to go much over 100 bytes post-compression*, but maybe I’m overlooking something.
*Even if your graph has 10 billion nodes, those can be tokenized in 34 bits, so the main concern is edges. Edges can include weights, timestamps, and so on, but how many specifics do you really need? At some point you can surely rely on a pointer to full detail stored elsewhere.
The biggest graph-size estimates I’ve gotten are from my clients at Yarcdata, a division of Cray. (“Yarc” is “Cray” spelled backwards.) To my surprise, they suggested that graphs about people could have 1000s of edges per node, whether in:
- An intelligence scenario, perhaps with billions of nodes and hence trillions of edges.
- A telecom user-analysis case, with perhaps 100 million nodes and hence 100s of billions of edges.
Yarcdata further suggested that bioinformatics use cases could have node counts higher yet, characterizing Bio2RDF as one of the “smaller” ones at 22 billion nodes. In these cases, the nodes/edge average seems lower than in people-analysis graphs, but we’re still talking about 100s of billions of edges.
Recalling that relationship analytics boils down to finding paths and subgraphs, the naive relational approach to such tasks would be: Read more
Categories: Analytic technologies, Aster Data, Data models and architecture, Hadoop, Health care, MapReduce, RDF and graphs, Scientific research, Telecommunications, Yarcdata and Cray | 20 Comments |
We’re back
Our blogs have been moved to a new hosting company, and everything should be working. Ditto our business site.
If you notice any counterexamples, please be so kind as to ping me.
Categories: About this blog | Leave a Comment |
Comments are briefly being turned off
I need to move web hosts, and am initiating the process now. This involves a large file copy, a recopy of same, and a variety of manual steps. So until the process is complete, updating site databases is a bad idea.
A comment is, of course, an update. So we’re closing off comments across DBMS 2, Strategic Messaging, Text Technologies, Software Memories, and the Monash Report. I hope to turn them back on shortly.
The sites should remain readable all the way through — unless, of course, there are more hosting company outages.
Categories: About this blog | Leave a Comment |
Site reliability has been ghastly
Unfortunately, we’ve had serious site outages over the past few days, as well as an increased frequency of shorter-term problems. My ordinarily excellent hosting company is going through a bad stretch, and I’ll have to move away from them. (As usual, I’ll rely on http://www.webhostingtalk.com for recommendations.)
When I pull the trigger on the move, there will be a short period when I turn off comments across all my blogs. I’ll post again here to announce when that is happening.
I apologize for the inconvenience.
Categories: About this blog | 2 Comments |
Relationship analytics application notes
This post is part of a series on managing and analyzing graph data. Posts to date include:
- Graph data model basics
- Relationship analytics definition
- Relationship analytics applications (this post)
- Analysis of large graphs
In my recent post on graph data models, I cited various application categories for relationship analytics. For most applications, it’s hard to get a lot of details. Reasons include:
- In adversarial domains such as national security, anti-fraud, or search engine ranking, it’s natural to keep algorithms secret.
- The big exception — influencer analytics, aka social network analysis — is obscured by a major hype/reality gap (so, come to think of it, is a lot of other predictive modeling).
Even so, it’s fairly safe to say:
- Much of relationship analytics is about subgraph pattern matching.
- Much of relationship analytics is about identifying subgraph patterns that are predictive of certain characteristics or outcomes.
- An important kind of relationship analytics challenge is to identify influential individuals.
Categories: Predictive modeling and advanced analytics, RDF and graphs, Telecommunications | 6 Comments |
Terminology: Relationship analytics
This post is part of a series on managing and analyzing graph data. Posts to date include:
- Graph data model basics
- Relationship analytics definition (this post)
- Relationship analytics applications
- Analysis of large graphs
In late 2005, I encountered a company called Cogito that was using a graphical data manager to analyze relationships. They called this “relational analytics”, which I thought was a terrible name for something that they were trying to claim should NOT be done in a relational DBMS. On the spot, I coined relationship analytics as an alternative. A business relationship ensued, which included a short white paper. Cogito didn’t do so well, however, and for a while the term “relationship analytics” faltered too. But recently it’s made a bit of a comeback, having been adopted by Objectivity, Qlik Tech, Yarcdata and others.
“Relationship analytics” is not a perfect name, both because it’s longish and because it might over-connote a social-network focus. But then, no other term would be perfect either. So we might as well stick with it.
In that case, “relationship analytics” could use an actual definition, preferably one a little heftier than just:
Analytics on graphs.
Categories: Cogito and 7 Degrees, Objectivity and Infinite Graph, QlikTech and QlikView, RDF and graphs, Yarcdata and Cray | 7 Comments |
Notes on graph data management
This post is part of a series on managing and analyzing graph data. Posts to date include:
- Graph data model basics (this post)
- Relationship analytics definition
- Relationship analytics applications
- Analysis of large graphs
Interest in graph data models keeps increasing. But it’s tough to discuss them with any generality, because “graph data model” encompasses so many different things. Indeed, just as all data structures can be mapped to relational ones, it is also the case that all data structures can be mapped to graphs.
Formally, a graph is a collection of (node, edge, node) triples. In the simplest case, the edge has no properties other than existence or maybe direction, and the triple can be reduced to a (node, node) pair, unordered or ordered as the case may be. It is common, however, for edges to encapsulate additional properties, the canonical examples of which are:
- Weight. Usually, the intuition here is that the weight is a number indicating the strength of the connection. This is generally derived from more basic data.
- Kind. The edge can encapsulate one or more descriptors indicating the kind of relationship between the nodes.
Many of the graph examples I can think of fit into four groups: Read more
Categories: Neo Technology and Neo4j, RDF and graphs, Telecommunications, Workday | 10 Comments |
Big Data hype?
A reporter wrote in to ask whether investor interest in “Big Data” was justified or hype. (More precisely, that’s how I reinterpreted his questions. 🙂 ) His examples were Splunk’s IPO, Teradata’s stock price increase, and Birst’s financing. In a nutshell:
- My comments, lightly edited, are in plain text below.
- Further thoughts are in italics.
- Of course I also linked him to my post “Big Data” has jumped the shark.
- Overall, my responses boil down to “Of course there’s some hype.”
1. A great example of hype is that anybody is calling Birst a “Big Data” or “Big Data analytics” company. If anything, Birst is a “little data” analytics company that claims, as a differentiating feature, that it can handle ordinary-sized data sets as well. Read more