April 17, 2017

Interana

Interana has an interesting story, in technology and business model alike. For starters:

And to be clear — if we leave aside any questions of marketing-name sizzle, this really is business intelligence. The closest Interana comes to helping with predictive modeling is giving its ad-hoc users inspiration as to where they should focus their modeling attention.

Interana also has an interesting twist in its business model, which I hope can be used successfully by other enterprise software startups as well. Read more

April 13, 2017

Analyzing the right data

0. A huge fraction of what’s important in analytics amounts to making sure that you are analyzing the right data. To a large extent, “the right data” means “the right subset of your data”.

1. In line with that theme:

2. Business intelligence interfaces today don’t look that different from what we had in the 1980s or 1990s. The biggest visible* changes, in my opinion, have been in the realm of better drilldown, ala QlikView and then Tableau. Drilldown, of course, is the main UI for business analysts and end users to subset data themselves.

*I used the word “visible” on purpose. The advances at the back end have been enormous, and much of that redounds to the benefit of BI.

3. I wrote 2 1/2 years ago that sophisticated predictive modeling commonly fit the template:

That continues to be tough work. Attempts to productize shortcuts have not caught fire.

Read more

March 26, 2017

Monitoring

A huge fraction of analytics is about monitoring. People rarely want to frame things in those terms; evidently they think “monitoring” sounds boring or uncool. One cost of that silence is that it’s hard to get good discussions going about how monitoring should be done. But I’m going to try anyway, yet again. :)

Business intelligence is largely about monitoring, and the same was true of predecessor technologies such as green paper reports or even pre-computer techniques. Two of the top uses of reporting technology can be squarely described as monitoring, namely:

Yes, monitoring-oriented BI needs investigative drilldown, or else it can be rather lame. Yes, purely investigative BI is very important too. But monitoring is still the heart of most BI desktop installations.

Predictive modeling is often about monitoring too. It is common to use statistics or machine learning to help you detect and diagnose problems, and many such applications have a strong monitoring element.

I.e., you’re predicting trouble before it happens, when there’s still time to head it off.

As for incident response, in areas such as security — any incident you respond to has to be noticed first Often, it’s noticed through analytic monitoring.

Hopefully, that’s enough of a reminder to establish the great importance of analytics-based monitoring. So how can the practice be improved? At least three ways come to mind, and only one of those three is getting enough current attention.

Read more

March 19, 2017

Cloudera’s Data Science Workbench

0. Matt Brandwein of Cloudera briefed me on the new Cloudera Data Science Workbench. The problem it purports to solve is:

Cloudera’s idea for a third way is:

In theory, that’s pure goodness … assuming that the automagic works sufficiently well. I gather that Cloudera Data Science Workbench has been beta tested by 5 large organizations and many 10s of users. We’ll see what is or isn’t missing as more customers take it for a spin.

Read more

March 12, 2017

Introduction to SequoiaDB and SequoiaCM

For starters, let me say:

Also:

Unfortunately, SequoiaDB has not captured a lot of detailed information about unpaid open source production usage.

Read more

March 1, 2017

One bit of news in Trump’s speech

Donald Trump addressed Congress tonight. As may be seen by the transcript, his speech — while uncharacteristically sober — was largely vacuous.

That said, while Steve Bannon is firmly established as Trump’s puppet master, they don’t agree on quite everything, and one of the documented disagreements had been in their view of skilled, entrepreneurial founder-type immigrants: Bannon opposes them, but Trump has disagreed with his view. And as per the speech, Trump seems to be maintaining his disagreement.

At least, that seems implied by his call for “a merit-based immigration system.”

And by the way — Trump managed to give a whole speech without saying anything overtly racist. Indeed, he specifically decried the murder of an Indian-immigrant engineer. By Trump standards, that counts as a kind of progress.

Edit (March 5): But now there is negative-seeming news about H1-B visas.

February 28, 2017

Coordination, the underused “C” word

I’d like to argue that a single frame can be used to view a lot of the issues that we think about. Specifically, I’m referring to coordination, which I think is a clearer way of characterizing much of what we commonly call communication or collaboration.

It’s easy to argue that computing, to an overwhelming extent, is really about communication. Most obviously:

Indeed, it’s reasonable to claim:

A little less obvious is the much of this communication could be alternatively described as coordination. Some communication has pure consumer value, such as when we talk/email/Facebook/Snapchat/FaceTime with loved ones. But much of the rest is for the purpose of coordinating business or technical processes.

Among the technical categories that boil down to coordination are:

That’s a lot of the value in “platform” IT right there.  Read more

February 2, 2017

There’s no escape from politics now

The United States and consequently much of the world are in political uproar. Much of that is about very general and vital issues such as war, peace or the treatment of women. But quite a lot of it is to some extent tech-industry-specific. The purpose of this post is outline how and why that is.

For example:

Because they involve grave threats to liberty, I see surveillance/privacy as the biggest technology-specific policy issues in the United States. (In other countries, technology-driven censorship might loom larger yet.) My views on privacy and surveillance have long been:

Given the recent election of a US president with strong authoritarian tendencies, that foot-dragging is much more important than it was before.

Other important areas of technology/policy overlap include: Read more

February 2, 2017

Politics and policy in the age of Trump

The United States presidency was recently assumed by an Orwellian lunatic.* Sadly, this is not an exaggeration. The dangers — both of authoritarianism and of general mis-governance — are massive. Everybody needs in some way to respond.

*”Orwellian lunatic” is by no means an oxymoron. Indeed, many of the most successful tyrants in modern history have been delusional; notable examples include Hitler, Stalin, Mao and, more recently, Erdogan. (By way of contrast, I view most other Soviet/Russian leaders and most jumped-up-colonel coup leaders as having been basically sane.)

There are many candidates for what to focus on, including:

But please don’t just go on with your life and leave the politics to others. Those “others” you’d like to rely on haven’t been doing a very good job.

What I’ve chosen to do personally includes: Read more

December 18, 2016

Introduction to Crate.io and CrateDB

Crate.io and CrateDB basics include:

In essence, CrateDB is an open source and less mature alternative to MemSQL. The opportunity for MemSQL and CrateDB alike exists in part because analytic RDBMS vendors didn’t close it off.

CrateDB’s not-just-relational story starts:

Read more

Next Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.