June 19, 2012

Hadoop marketing themes that deserve to be ignored

This is part of a four-post series, covering:

The posts depend on each other in various ways.

I am subjected to much Hadoop marketing. Indeed, I even help various clients inflict Hadoop marketing upon the world. But a guy’s got to draw a line somewhere, and there are certain Hadoop marketing themes that I just refuse to take seriously.

1. Big data. I think the term “big data” long ago jumped the shark. If a firm uses the term “big data”, I teeth-grittingly let it pass. But if they send me PR email offering to “explain” the benefits or “real meaning” of “big data”, my response is apt to be unkind.

2. Conference-timed news. I’ve never liked the custom of multiple vendors piling announcements into the same conference week. It seems like a calculated strategy to ensure getting the least possible mind share and attention — unless, of course, your announcement is so lame that brief mentions in conference-week roundups are the most visibility you can hope to get. Even so, many vendors make the marketing choice to pile on. Fine. But I’ll write in response if and when I feel like it.

3. Contribution Olympics. The Urinary Olympics as to who contributed more lines of code, patches, whatever to various Hadoop sub-projects got pretty silly; and although it peaked last year, elements of it are with us still. I do see two scenarios where the whole discussion might have genuine value, namely:

Otherwise, however, I pay little attention to claims like “We thought this scheme up 2 years ago, and hence we’re the experts on whether it’s now ready for production.”

June 18, 2012

Introduction to MemSQL

I talked with MemSQL shortly before today’s launch. MemSQL technology basics are:

MemSQL’s performance claims include:

MemSQL company basics include: Read more

June 16, 2012

Metamarkets’ back-end technology

This is part of a three-post series:

The canonical Metamarkets batch ingest pipeline is a bit complicated.

By “get data read to be put into Druid” I mean:

That metadata is what goes into the MySQL database, which also retains data about shards that have been invalidated. (That part is needed because of the MVCC.)

By “build the data segments” I mean:

When things are being done that way, Druid may be regarded as comprising three kinds of servers: Read more

June 16, 2012

Metamarkets Druid overview

This is part of a three-post series:

My clients at Metamarkets are planning to open source part of their technology, called Druid, which is described in the Druid section of Metamarkets’ blog. The timing of when this will happen is a bit unclear; I know the target date under NDA, but it’s not set in stone. But if you care, you can probably contact the company to get involved earlier than the official unveiling.

I imagine that open-source Druid will be pretty bare-bones in its early days. Code was first checked in early in 2011, and Druid seems to have averaged around 1 full-time developer since then. What’s more, it’s not obvious that all the features I’m citing here will be open-sourced; indeed, some of the ones I’m describing probably won’t be.

In essence, Druid is a distributed analytic DBMS. Druid’s design choices are best understood when you recall that it was invented to support Metamarkets’ large-scale, RAM-speed, internet marketing/personalization SaaS (Software as a Service) offering. In particular:

Interestingly, the single-table/multi-valued choice is echoed at WibiData, which deals with similar data sets. However, WibiData’s use cases are different from Metamarkets’, and in most respects the WibiData architecture is quite different from that of Metamarkets/Druid.

Read more

June 16, 2012

Introduction to Metamarkets and Druid

I previously dropped a few hints about my clients at Metamarkets, mentioning that they:

But while they’re a joy to talk with, writing about Metamarkets has been frustrating, with many hours and pages of wasted of effort. Even so, I’m trying again, in a three-post series:

Much like Workday, Inc., Metamarkets is a SaaS (Software as a Service) company, with numerous tiers of servers and an affinity for doing things in RAM. That’s where most of the similarities end, however, asĀ  Metamarkets is a much smaller company than Workday, doing very different things.

Metamarkets’ business is SaaS (Software as a Service) business intelligence, on large data sets, with low latency in both senses (fresh data can be queried on, and the queries happen at RAM speed). As you might imagine, Metamarkets is used by digital marketers and other kinds of internet companies, whose data typically wants to be in the cloud anyway. Approximate metrics for Metamarkets (and it may well have exceeded these by now) include 10 customers, 100,000 queries/day, 80 billion 100-byte events/month (before summarization), 20 employees, 1 popular CEO, and a metric ton of venture capital.

To understand how Metamarkets’ technology works, it probably helps to start by realizing: Read more

June 14, 2012

Workday update

In August 2010, I wrote about Workday’s interesting technical architecture, highlights of which included:

I caught up with Workday recently, and things have naturally evolved. Most of what we talked about (by my choice) dealt with data management, business intelligence, and the overlap between the two.

It is now reasonable to say that Workday’s servers fall into at least seven tiers, although we talked mainly about five that work together as a kind of giant app/database server amalgamation. The three that do noteworthy data management can be described as:

Two other Workday server tiers may be described as: Read more

June 12, 2012

QlikTech bought Expressor

QlikTech has bought Expressor. Notes on that include:

June 3, 2012

Introduction to Cloudant

Cloudant is one of the few NoSQL companies with >100 paying subscription customers. For starters:

Company demographics include:

The Cloudant guys gave me some customer counts in May that weren’t much higher than those they gave me in February, and seem to have forgotten to correct the discrepancy. Oh well. The latter (probably understated) figures included ~160 paying customers, of which:

The largest Cloudant deployments seem to be in the 10s of terabytes, across a very low double digit number of servers.

Read more

May 28, 2012

Quick-turnaround predictive modeling

Last November, I wrote two posts on agile predictive analytics. It’s time to return to the subject. I’m used to KXEN talking about the ability to do predictive modeling, very quickly, perhaps without professional statisticians; that the core of what KXEN does. But I was surprised when Revolution Analytics told me a similar story, based on a different approach, because ordinarily that’s not how R is used at all.

Ultimately, there seem to be three reasons why you’d want quick turnaround on your predictive modeling: Read more

May 22, 2012

Kognitio’s story today

I had dinner tonight with the Kognitio folks. So far as I can tell:

Kognitio believes that this story is appealing, especially to smaller venture-capital-backed companies, and backs that up with some frieNDA pipeline figures.

Between that success claim and SAP’s HANA figures, it seems that the idea of using an in-memory DBMS to accelerate analytics has legs. This makes sense, as the BI vendors — Qlik Tech excepted — don’t seem to be accomplishing much with their proprietary in-memory alternatives. But I’m not sure that Kognitio would be my first choice to fill that role. Rather, if I wanted to buy an unsuccessful analytic RDBMS to use as an in-memory accelerator, I might consider ParAccel, which is columnar, has an associated compression story, has always had a hybrid memory-centric flavor much as Kognitio has, and is well ahead of Kognitio in the analytic platform derby. That said, I’ll confess to not having talked with or heard much about ParAccel for a while, so I don’t know if they’ve been able maintain technical momentum any more than Kognitio has.

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.