July 14, 2011

An odd claim attributed to Mike Stonebraker

This post has a sequel.

Last week, Mike Stonebraker insulted MySQL and Facebook’s use of it, by implication advocating VoltDB instead. Kerfuffle ensued. To the extent Mike was saying that non-transparently sharded MySQL isn’t an ideal way to do things, he’s surely right. That still leaves a lot of options for massive short-request databases, however, including transparently sharded RDBMS, scale-out in-memory DBMS (whether or not VoltDB*), and various NoSQL options. If nothing else, Couchbase would seem superior to memcached/non-transparent MySQL if you were starting a project today.

*The big problem with VoltDB, last I checked, was its reliance on Java stored procedures to get work done.

Pleasantries continued in The Register, which got an amazing-sounding quote from Mike. If The Reg is to be believed — something I wouldn’t necessarily take for granted — Mike claimed that he (i.e. VoltDB) knows how to solve the distributed join performance problem.  Read more

July 10, 2011

Hadoop futures and enhancements

Hadoop is immature technology. As such, it naturally offers much room for improvement in both industrial-strengthness and performance. And since Hadoop is booming, multiple efforts are underway to fill those gaps. For example:

(Zettaset belongs in the discussion too, but made an unfortunate choice of embargo date.)

Read more

July 10, 2011

Cloudera and Hortonworks

My clients at Cloudera have been around for a while, in effect positioned as “the Hadoop company.” Their business, in a nutshell, consists of:

Hortonworks spun out of Yahoo last week, with parts of the Cloudera business model, namely Hadoop support, training, and I guess conferences. Hortonworks emphatically rules out professional services, and says that it will contribute all code back to Apache Hadoop. Hortonworks does grudgingly admit that it might get into the proprietary software business at some point — but evidently hopes that day will never actually come.

Read more

July 7, 2011

Sybase IQ soundbites

Sybase made a total hash of the timing of this week’s press release. I got annoyed after they promised to inform me of the new embargo time, then broke the promise. Other people got annoyed earlier than that.

So be it. Below is the draft of a post I was holding, with brackets added around one word that is no longer accurate.

I don’t write enough about Sybase IQ. That said, I offered a couple of quotes to a reporter [yesterday] in connection with the general availability of Sybase IQ 15.3. Lightly edited, they go:

Beyond that, I should note:

July 6, 2011

Hadapt update

I met with the Hadapt guys today.  I think I can be a bit crisper than before in positioning Hadapt and its use cases, namely:

Other evolution from what I wrote about Hadapt a few months ago includes:

In other news, Hadapt is our newest client.

July 6, 2011

Petabyte-scale Hadoop clusters (dozens of them)

I recently learned that there are 7 Vertica clusters with a petabyte (or more) each of user data. So I asked around about other petabyte-scale clusters. It turns out that there are several dozen such clusters (at least) running Hadoop.

Cloudera can identify 22 CDH (Cloudera Distribution [of] Hadoop) clusters holding one petabyte or more of user data each, at 16 different organizations. This does not count Facebook or Yahoo, who are huge Hadoop users but not, I gather, running CDH. Meanwhile, Eric Baldeschwieler of Hortonworks tells me that Yahoo’s latest stated figures are:

Read more

July 6, 2011

Hadoop hardware and compression

A month ago, I posted about typical Hadoop hardware. After talking today with Eric Baldeschwieler of Hortonworks, I have an update. I also learned some things from Eric and from Brian Christian of Zettaset about Hadoop compression.

First the compression part. Eric thinks 6-10X compression is common for “curated” Hadoop data — i.e., the data that actually gets used a lot. Brian used an overall figure of 6-8X, and told of a specific customer who had 6X or a little more. By way of comparison, it sounds as if the kinds of data involved are like what Vertica claimed 10-60X compression for almost three years ago.

Eric also made an excellent point about low-value machine-generated data. I was suggesting that as Moore’s Law made sensor networks ever more affordable:  Read more

July 5, 2011

Eight kinds of analytic database (Part 2)

In Part 1 of this two-part series, I outlined four variants on the traditional enterprise data warehouse/data mart dichotomy, and suggested what kinds of DBMS products you might use for each. In Part 2 I’ll cover four more kinds of analytic database — even newer, for the most part, with a use case/product short list match that is even less clear.  Read more

July 5, 2011

Eight kinds of analytic database (Part 1)

Analytic data management technology has blossomed, leading to many questions along the lines of “So which products should I use for which category of problem?” The old EDW/data mart dichotomy is hopelessly outdated for that purpose, and adding a third category for “big data” is little help.

Let’s try eight categories instead. While no categorization is ever perfect, these each have at least some degree of technical homogeneity. Figuring out which types of analytic database you have or need — and in most cases you’ll need several — is a great early step in your analytic technology planning.  Read more

June 27, 2011

What colleges should teach in analytics

Based on a Teradata press release calling attention to the small amount of explicit university instruction in business intelligence, I was asked:

Does BI really need a dedicated undergrad track? What sort of BI and analytics-related skills should students look to obtain now in order to be viable in the job marketplace five years out?

My answers were (slightly edited):

Of course, there are more specialized skills also worth teaching, in a number of areas, starting with statistics and other predictive modeling technologies. But it’s OK to go through life not knowing those.

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.