Hope for a new PostgreSQL era?
In a comedy of briefing errors, I’m not too clear on the details of my client salesforce.com’s new PostgreSQL-as-a-service offering, nor exactly on what my clients at VMware are bringing to the PostgreSQL virtualization/cloud party. That said:
- PostgreSQL is good technology.
- MySQL is narrowing the gap, but PostgreSQL is still ahead of MySQL in some ways. (Database extensibility if nothing else.)
- PostgreSQL has a lot of users. (Many of them in academia and/or Russia.)
- Neither EnterpriseDB (which now calls itself “The enterprise PostgreSQL company”) nor the PostgreSQL community leadership have covered themselves with stewardship glory.
- A significant number of interesting DBMS products can be regarded as PostgreSQL forks (e.g. Greenplum, Aster Data nCluster, Netezza if you squint, and Vertica if you stand on your head*).
- PostgreSQL advancement is not dead. For example, Hadapt beta users are running actual PostgreSQL on many nodes each.
- There’s no assurance that Oracle will be a benevolent MySQL steward forever. (Specifically, Oracle’s “Play nicely with others” antitrust commitments expire in 2014.)
So I think it would be cool if one or the other big company put significant wood behind the PostgreSQL arrow.
*While Vertica was originally released using little or no PostgreSQL code — reports varied — it featured high degrees of PostgreSQL compatibility.
Categories: Aster Data, EnterpriseDB and Postgres Plus, Greenplum, MySQL, Netezza, Open source, salesforce.com, Vertica Systems | 8 Comments |
Some big-vendor execution questions, and why they matter
When I drafted a list of key analytics-sector issues in honor of look-ahead season, the first item was “execution of various big vendors’ ambitious initiatives”. By “execute” I mean mainly:
- “Deliver products that really meet customers’ desires and needs.”
- “Successfully convince them that you’re doing so …”
- “… at an attractive overall cost.”
Vendors mentioned here are Oracle, SAP, HP, and IBM. Anybody smaller got left out due to the length of this post. Among the bigger omissions were:
- salesforce.com (multiple subjects).
- SAS HPA.
- The evolution of Hadoop.
Analytic trends in 2012: Q&A
As a new year approaches, it’s the season for lists, forecasts and general look-ahead. Press interviews of that nature have already begun. And so I’m working on a trilogy of related posts, all based on an inquiry about hot analytic trends for 2012.
This post is a moderately edited form of an actual interview. Two other posts cover analytic trends to watch (planned) and analytic vendor execution challenges to watch (already up).
QlikView 11 and the rise of collaborative BI
QlikView 11 came out last month. Let me start by pointing out:
- As one might expect, QlikView 11 contains fairly leading-edge stuff, but also some “better late than never” features.
- The leading-edge stuff is concentrated in the general area of “collaboration”.
- Additionally, QlikTech is always pushing the QlikView user interface ahead in various ways.
- The “Well, it’s about time!” feature list starts with the ability to load QlikView via third-party ETL tools (Informatica now, others coming).
- QlikTech is generally good at putting up pretty pictures of its product. You can find some in the “What’s New in QlikView 11” document via a general QlikView resource page.*
- Stephen Swoyer wrote a good article summarizing QlikView 11.
*One confusing aspect to that paper: non-standard uses of the terms “analytic app” and “document”.
As QlikTech tells it, QlikView 11 adds two kinds of collaboration features:
- Integration with social media, which QlikTech calls “asynchronous integration.”
- Direct sharing of the QlikView UI, which QlikTech calls “synchronous integration.”
I’d add a third kind, because QlikView 11 also takes some baby steps toward what I regard as a key aspect of BI collaboration — the ability to define and track your own metrics. It’s way, way short of what I called for in metric flexibility in a post last year, but at least it’s a small start.
Clarifying SAND’s customer metrics, positioning and technical story
Talking with my clients at SAND can be confusing. That said:
- I need to revise my figures for SAND’s customer count way downward.
- SAND finally has a reasonably clear positioning.
- SAND’s product actually seems to have a lot of features.
A few months ago, I wrote:
SAND Technology reported >600 total customers, including >100 direct.
Upon talking with the company, I need to revise that figure downward, from > 600 to 15.
Exasol update
I last wrote about Exasol in 2008. After talking with the team Friday, I’m fixing that now. 🙂 The general theme was as you’d expect: Since last we talked, Exasol has added some new management, put some effort into sales and marketing, got some customers, kept enhancing the product and so on.
Top-level points included:
- Exasol’s technical philosophy is substantially the same as before, albeit not with as extreme a focus on fitting everything in RAM.
- Exasol believes its flagship DBMS EXASolution has great performance on a load-and-go basis.
- Exasol has 25 EXASolution customers, all in Germany.*
- 5 of those are “cloud” customers, at hosting providers engaged by Exasol.
- EXASolution database sizes now range from the low 100s of gigabytes up to 30 terabytes.
- Pretty much the whole company is in Nuremberg.
StreamBase LiveView — push-based real-time BI
My clients at StreamBase are coming out with a new product line called LiveView, and I agreed they could launch it via this blog. Key points about StreamBase LiveView Version 1.0 include:
- LiveView is a business intelligence and alerting suite built on/in the rest of StreamBase’s technology, meant to operate on streaming data.
- LiveView is positioned by StreamBase as having a true push event-driven architecture rather than pull/poll.
- StreamBase LiveView is designed to query in-memory data and then have the results change in real time as the data set changes.
- The LiveView user interface is a rapidly changing work in progress.
- LiveView has other Version 1 limitations as well
- LiveView is targeted squarely at StreamBase’s financial trading core market until some of the Version 1 limitations are lifted.
The basic StreamBase LiveView pipeline goes something like: Read more
Categories: Business intelligence, Data warehousing, Memory-centric data management, StreamBase, Streaming and complex event processing (CEP) | 2 Comments |
StreamBase catchup
While I was cryptic in my general CEP/streaming catchup, I’ll say a bit more regarding StreamBase in particular. At the highest level, non-technically:
- StreamBase once planned to conquer the world.
- However, StreamBase really only sold effectively in the financial trading and intelligence markets.
- StreamBase retrenched, focusing almost exclusively on the financial trading market.
- With StreamBase LiveView, StreamBase is expanding from embedded operational analytics to do (also operational) business intelligence as well.
- StreamBase is hopeful that, perhaps starting with Version 2 or so, LiveView will be successful outside the financial trading market.
Categories: Investment research and trading, Parallelization, StreamBase, Streaming and complex event processing (CEP) | 2 Comments |
Very brief CEP/streaming catchup
When I agreed to launch the StreamBase LiveView product via DBMS 2, I planned to catch up on the whole CEP/streaming area first. Due to the power and internet outages last week, that didn’t entirely happen. So I’ll do a bit of that now, albeit more cryptically than I hoped and intended.
- The upshot of my what to call CEP thread in August was that “streaming” and “event processing” are not the same concept, but it so happens that they have the most traction where they intersect. That said, I both observe and endorse an apparent shift from “event” to “stream” as the core of the terminology, in a reversal of my opinion of several years ago.
- IBM continues to throw a lot of resources at its System S/ InfoSphere Streams product, but I haven’t heard yet of much marketplace success. That said, I believe IBM is still pretty serious about Streams, as one would expect from an effort whose code name so cheekily references System R. In particular, Streams shows up prominently on IBM’s top-level analytic architecture slide.
- Sybase recently released its ESP (Event Stream Processor) 5.0, which it says is the full merger of the Aleri and Coral8 predecessors. You can still get Sybase ESP without buying into the full Sybase RAP stack, and Sybase has no plans to change that.
- Sybase has discontinued all the business intelligence types of products Aleri and Coral8 were developing. Rather, Sybase is OEMing Panopticon, which it reports has been well received. Other than the discontinuation of the BI efforts, there seem to be few Aleri or Coral8 features missing from the merged Sybase ESP product.
- Truviso continues to be out of the picture.
- I have more to say about StreamBase separately.
- I have more to say about Sybase and IBM, which I’ll get to when I can.
- I have nothing new on Progress Apama. I also know little about any of the open source efforts.
Meanwhile, if you want to see technically nitty-gritty posts about the CEP/streaming area, you may want to look at my CEP/streaming coverage circa 2007-9, based on conversations with (among others) Mike Stonebraker, John Bates, and Mark Tsimelzon.
Categories: Business intelligence, IBM and DB2, StreamBase, Streaming and complex event processing (CEP), Sybase, Truviso | 4 Comments |
Terminology: Operational analytics
It’s time for me to try to define “operational analytics”. Clues pointing me to that need include:
- The term investigative analytics has gotten considerable traction.
- I generally contrast “investigative” and “operational” analytics, for example in the last line of the post linked above, or in my recent introduction to Odiago WibiData.
- It’s clear that I’m conflating several different things in the term. (See for example the operational analytics sections of my posts on eight kinds of analytic database or definitional challenges for 2011.)
- I’m pretty negative about the utility of alternate terms such as “operational BI”.
But as in all definitional discussions, please remember that nothing concise is ever precise.
Activities I want to call “operational analytics” include but are not limited to (and some of these overlap): Read more