December 29, 2008

ParAccel actually uses relatively little PostgreSQL code

I often find it hard to write about ParAccel’s technology, for a variety of reasons:

ParAccel is quick, however, to send email if I post anything about them they think is incorrect.

All that said, I did get careless when I neglected to doublecheck something I already knew. Read more

December 29, 2008

Ordinary OLTP DBMS vs. memory-centric processing

A correspondent from China wrote in to ask about products that matched the following application scenario: Read more

December 20, 2008

More grist for the column vs. row mill

Daniel Abadi and Sam Madden are at it again, following up on their blog posts of six months arguing for the general superiority of column stores over row stores (for analytic query processing).  The gist is to recite a number of bases for superiority, beyond the two standard ones of less I/O and better compression, and seems to be based largely on Section 5 of a SIGMOD paper they wrote with Neil Hachem.

A big part of their argument is that if you carry the processing of columnar and/or compressed data all the way through in memory, you get lots of advantages, especially because everything’s smaller and hence fits better into Level 2 cache. There also is some kind of join algorithm enhancement, which seems to be based on noticing when the result wound up falling into a range according to some dimension, and perhaps using dictionary encoding in a way that will help induce such an outcome.

The main enemy here is row-store vendors who say, in effect, “Oh, it’s easy to shoehorn almost all the benefits of a column-store into a row-based system.”  They also take a swipe — for being insufficiently purely columnar — at unnamed columnar Vertica competitors, described in terms that seemingly apply directly to ParAccel.

December 16, 2008

Database archiving and information preservation

Two similar companies reached out to me recently – SAND Technology and Clearpace. Their current market focus is somewhat different: Clearpace talks mainly of archiving, and sells first and foremost into the compliance market, while SAND has the most traction providing “near-line” storage for SAP databases.* But both stories boil down to pretty much the same thing: Cheap, trustworthy data storage with good-enough query capabilities. E.g., I think both companies would agree the following is a not-too-misleading first-approximation characterization of their respective products:

Read more

December 16, 2008

Introduction to Clearpace

Clearpace is a UK-based startup in a similar market to what SAND Technology has gotten into – DBMS archiving, with a strong focus on compression and general cost-effectiveness. Clearpace launched its product NParchive a couple of quarters ago, and says it now has 25 people and $1 million or so in revenue. Clearpace NParchive technical highlights include: Read more

December 16, 2008

Introduction to SAND Technology

SAND Technology has a confused history. For example:

SAND is publicly traded, so its numbers are on display. It turns out to be doing $7 million in annual revenue, and losing money.

OK. I just wanted to get all that out of the way. My main thoughts about the DBMS archiving market are in a separate post.

December 15, 2008

How to buy an analytic DBMS (overview)

I went to London for a couple of days last week, at the behest of Kognitio. Since I was in the neighborhood anyway, I visited their offices for a briefing. But the main driver for the trip was a seminar Thursday at which I was the featured speaker. As promised, the slides have been uploaded here.

The material covered on the first 13 slides should be very familiar to readers of this blog. I touched on database diversity and the disk-speed barrier, after which I zoomed through a quick survey of the data warehouse DBMS market. But then I turned to material I’ve been working on more recently – practical advice directly on the subject of how to buy an analytic DBMS.

I started by proposing a seven-part segmentation self-assessment: Read more

December 14, 2008

The “baseball bat” test for analytic DBMS and data warehouse appliances

More and more, I’m hearing about reliability, resilience, and uptime as criteria for choosing among data warehouse appliances and analytic DBMS. Possible reasons include:

The truth probably lies in a combination of all these factors.

Making the most fuss on the subject is probably Aster Data, who like to talk at length both about mission-critical data warehouse applications and Aster’s approach to making them robust. But I’m also hearing from multiple vendors that proofs-of-concept now regularly include stress tests against failure, in what can be – and indeed has been – called the “baseball bat” test. Prospects are encouraged to go on a rampage, pulling out boards, disk drives, switches, power cables, and almost anything else their devious minds can come up with to cause computer carnage. Read more

December 14, 2008

Kognitio and WX-2 update

I went to Bracknell Wednesday to spend time with the Kognitio team. I think I came away with a better understanding of what the technology is all about, and why certain choices have been made.

Like almost every other contender in the market,* Kognitio WX-2 queries disk-based data in the usual way. Even so, WX-2’s design is very RAM-centric. Data gets on and off disk in mind-numbingly simple ways – table scans only, round-robin partitioning only (as opposed to the more common hash), and no compression. However, once the data is in RAM, WX-2 gets to work, happily redistributing as seems optimal, with little concern about which node retrieved the data in the first place. (I must confess that I don’t yet understand why this strategy doesn’t create ridiculous network bottlenecks.) How serious is Kognitio about RAM? Well, they believe they’re in the process of selling a system that will include 40 terabytes of the stuff. Apparently, the total hardware cost will be in the $4 million range.

*Exasol is the big exception. They basically use disk as a source from which to instantiate in-memory databases.

Other technical highlights of the Kognitio WX-2 story include: Read more

December 2, 2008

Data warehouse load speeds in the spotlight

Syncsort and Vertica combined to devise and run a benchmark in which a data warehouse got loaded at 5 ½ terabytes per hour, which is several times faster than the figures used in any other vendors’ similar press releases in the past. Takeaways include:

The latter is unsurprising. Back in February, I wrote at length about how Vertica makes rapid columnar updates. I don’t have a lot of subsequent new detail, but it made sense then and now. Read more

Next Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:


Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.