Databricks, Spark and BDAS

Discussion of BDAS (Berkeley Data Analytics Systems), especially Spark and related projects, and also of Databricks, the company commercializing Spark.

March 17, 2014

Notes and comments, March 17, 2014

I have ever more business-advice posts up on Strategic Messaging. Recent subjects include pricing and stealth-mode marketing. Other stuff I’ve been up to includes:

The Spark buzz keeps increasing; almost everybody I talk with expects Spark to win big, probably across several use cases.

Disclosure: I’ll soon be in a substantial client relationship with Databricks, hoping to improve their stealth-mode marketing. :D

The “real-time analytics” gold rush I called out last year continues. A large fraction of the vendors I talk with have some variant of “real-time analytics” as a central message.

Basho had a major change in leadership. A Twitter exchange ensued. :) Joab Jackson offered a more sober — figuratively and literally — take.

Hadapt laid off its sales and marketing folks, and perhaps some engineers as well. In a nutshell, Hadapt’s approach to SQL-on-Hadoop wasn’t selling vs. the many alternatives, and Hadapt is doubling down on poly-structured data*/schema-on-need.

*While Hadapt doesn’t to my knowledge use the term “poly-structured data”, some other vendors do. And so I may start using it more myself, at least when the poly-structured/multi-structured distinction actually seems significant.

WibiData is partnering with DataStax, WibiData is of course pleased to get access to Cassandra’s user base, which gave me the opportunity to ask why they thought Cassandra had beaten HBase in those accounts. The answer was performance and availability, while Cassandra’s traditional lead in geo-distribution wasn’t mentioned at all.

Disclosure: My fingerprints are all over that deal.

In other news, WibiData has had some executive departures as well, but seems to be staying the course on its strategy. I continue to think that WibiData has a really interesting vision about how to do large-data-volume interactive computing, and anybody in that space would do well to talk with them or at least look into the open source projects WibiData sponsors.

I encountered another apparently-popular machine-learning term — bandit model. It seems to be glorified A/B testing, and it seems to be popular. I think the point is that it tries to optimize for just how much you invest in testing unproven (for good or bad) alternatives.

I had an awkward set of interactions with Gooddata, including my longest conversations with them since 2009. Gooddata is in the early days of trying to offer an all-things-to-all-people analytic stack via SaaS (Software as a Service). I gather that Hadoop, Vertica, PostgreSQL (a cheaper Vertica alternative), Spark, Shark (as a faster version of Hive) and Cassandra (under the covers) are all in the mix — but please don’t hold me to those details.

I continue to think that computing is moving to a combination of appliances, clusters, and clouds. That said, I recently bought a new gaming-class computer, and spent many hours gaming on it just yesterday.* I.e., there’s room for general-purpose workstations as well. But otherwise, I’m not hearing anything that contradicts my core point.

*The last beta weekend for The Elder Scrolls Online; I loved Morrowind.

February 2, 2014

Some stuff I’m thinking about (early 2014)

From time to time I like to do “what I’m working on” posts. From my recent blogging, you probably already know that includes:

Other stuff on my mind includes but is not limited to:

1. Certain categories of buying organizations are inherently leading-edge.

Fine. But what really intrigues me is when more ordinary enterprises also put leading-edge technologies into production. I pester everybody for examples of that.

Read more

February 2, 2014

Spark and Databricks

I’ve heard a lot of buzz recently around Spark. So I caught up with Ion Stoica and Mike Franklin for a call. Let me start by acknowledging some sources of confusion.

The “What is Spark?” question may soon be just as difficult as the ever-popular “What is Hadoop?” That said — and referring back to my original technical post about Spark and also to a discussion of prominent Spark user ClearStory — my try at “What is Spark?” goes something like this:

Read more

January 3, 2014

Notes on memory-centric data management

I first wrote about in-memory data management a decade ago. But I long declined to use that term — because there’s almost always a persistence story outside of RAM — and coined “memory-centric” as an alternative. Then I relented 1 1/2 years ago, and defined in-memory DBMS as

DBMS designed under the assumption that substantially all database operations will be performed in RAM (Random Access Memory)

By way of contrast:

Hybrid memory-centric DBMS is our term for a DBMS that has two modes:

  • In-memory.
  • Querying and updating (or loading into) persistent storage.

These definitions, while a bit rough, seem to fit most cases. One awkward exception is Aerospike, which assumes semiconductor memory, but is happy to persist onto flash (just not spinning disk). Another is Kognitio, which is definitely lying when it claims its product was in-memory all along, but may or may not have redesigned its technology over the decades to have become more purely in-memory. (But if they have, what happened to all the previous disk-based users??)

Two other sources of confusion are:

With all that said, here’s a little update on in-memory data management and related subjects.

And finally,

October 30, 2013

Glassbeam instantiates a lot of trends

Glassbeam checked in recently, and they turn out to exemplify quite a few of the themes I’ve been writing about. For starters:

Glassbeam basics include:

All Glassbeam customers except one are SaaS/cloud (Software as a Service), and even that one was only offered a subscription (as oppose to perpetual license) price.

So what does Glassbeam’s technology do? Glassbeam says it is focused on “machine data analytics,” specifically for the “Internet of Things”, which it distinguishes from IT logs.* Specifically, Glassbeam sells to manufacturers of complex devices — IT (most of its sales so far ), medical, automotive (aspirational to date), etc. — and helps them analyze “phone home” data, for both support/customer service and marketing kinds of use cases. As of a recent release, the Glassbeam stack can: Read more

September 29, 2013

ClearStory, Spark, and Storm

ClearStory Data is:

I think I can do an interesting post about ClearStory while tap-dancing around the still-secret stuff, so let’s dive in.


To a first approximation, ClearStory ingests data in a system built on Storm (code name: Stormy), dumps it into HDFS, and then operates on it in a system built on Spark (code name: Sparky). Along the way there’s a lot of interaction with another big part of the system, a metadata catalog with no code name I know of. Or as I keep it straight:

Read more

September 8, 2013

Layering of database technology & DBMS with multiple DMLs

Two subjects in one post, because they were too hard to separate from each other

Any sufficiently complex software is developed in modules and subsystems. DBMS are no exception; the core trinity of parser, optimizer/planner, and execution engine merely starts the discussion. But increasingly, database technology is layered in a more fundamental way as well, to the extent that different parts of what would seem to be an integrated DBMS can sometimes be developed by separate vendors.

Major examples of this trend — where by “major” I mean “spanning a lot of different vendors or projects” — include:

Other examples on my mind include:

And there are several others I hope to blog about soon, e.g. current-day PostgreSQL.

In an overlapping trend, DBMS increasingly have multiple data manipulation APIs. Examples include:  Read more

August 25, 2013

Cloudera Hadoop strategy and usage notes

When we scheduled a call to talk about Sentry, Cloudera’s Charles Zedlewski and I found time to discuss other stuff as well. One interesting part of our discussion was around the processing “frameworks” Cloudera sees as most important.

HBase was artificially omitted from this “frameworks” discussion because Cloudera sees it as a little bit more of a “storage” system than a processing one.

Another good subject was offloading work to Hadoop, in a couple different senses of “offload”: Read more

March 11, 2013

Hadoop execution enhancements

Hadoop 2.0/YARN is the first big step in evolving Hadoop beyond a strict Map/Reduce paradigm, in that it at least allows for the possibility of non- or beyond-MapReduce processing engines. While YARN didn’t meet its target of general availability around year-end 2012, Arun Murthy of Hortonworks told me recently that:

Arun further told me about Tez, the next-generation Hadoop processing engine he’s working on, which he also discussed in a recent blog post:

With the emergence of Apache Hadoop YARN as the basis of next generation data-processing architectures, there is a strong need for an application which can execute a complex DAG [Directed Acyclic Graph] of tasks which can then be shared by Apache Pig, Apache Hive, Cascading and others.  The constrained DAG expressible in MapReduce (one set of maps followed by one set of reduces) often results in multiple MapReduce jobs which harm latency for short queries (overhead of launching multiple jobs) and throughput for large-scale queries (too much overhead for materializing intermediate job outputs to the filesystem). With Tez, we introduce a more expressive DAG of tasks, within a single application or job, that is better aligned with the required processing task – thus, for e.g., any given SQL query can be expressed as a single job using Tez.

This is similar to the approach of BDAS Spark:

Rather than being restricted to Maps and Reduces, Spark has more numerous primitive operations, including map, reduce, sample, join, and group-by. You can do these more or less in any order.

although Tez won’t match Spark’s richer list of primitive operations.

More specifically, there will be six primitive Tez operations:

A Map step would compound HDFS input, output sorting, and output shuffling; a Reduce step compounds — you guessed it! — input sorting, input shuffling, and HDFS output.

I can’t think of much in the way of algorithms that would be logically impossible in MapReduce yet possible in Tez. Rather, the main point of Tez seems to be performance, performance consistency, response-time consistency, and all that good stuff. Specific advantages that Arun and I talked about included:

December 13, 2012

Spark, Shark, and RDDs — technology notes

Spark and Shark are interesting alternatives to MapReduce and Hive. At a high level:

The key concept here seems to be the RDD. Any one RDD:

Otherwise, there’s a lot of flexibility; an RDD can be a set of tuples, a collection of XML documents, or whatever other reasonable kind of dataset you want. And I gather that:

Read more

Next Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:


Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.