Databricks, Spark and BDAS

Discussion of BDAS (Berkeley Data Analytics Systems), especially Spark and related projects, and also of Databricks, the company commercializing Spark.

October 21, 2016

Rapid analytics

“Real-time” technology excites people, and has for decades. Yet the actual, useful technology to meet “real-time” requirements remains immature, especially in cases which call for rapid human decision-making. Here are some notes on that conundrum.

1. I recently posted that “real-time” is getting real. But there are multiple technology challenges involved, including:

2. In early 2011, I coined the phrase investigative analytics, about which I said three main things: Read more

August 28, 2016

Are analytic RDBMS and data warehouse appliances obsolete?

I used to spend most of my time — blogging and consulting alike — on data warehouse appliances and analytic DBMS. Now I’m barely involved with them. The most obvious reason is that there have been drastic changes in industry structure:

Simply reciting all that, however, begs the question of whether one should still care about analytic RDBMS at all.

My answer, in a nutshell, is:

Analytic RDBMS — whether on premises in software, in the form of data warehouse appliances, or in the cloud – are still great for hard-core business intelligence, where “hard-core” can refer to ad-hoc query complexity, reporting/dashboard concurrency, or both. But they aren’t good for much else.

Read more

August 21, 2016

Introduction to data Artisans and Flink

data Artisans and Flink basics start:

Like many open source projects, Flink seems to have been partly inspired by a Google paper.

To this point, data Artisans and Flink have less maturity and traction than Databricks and Spark. For example:  Read more

August 21, 2016

More about Databricks and Spark

Databricks CEO Ali Ghodsi checked in because he disagreed with part of my recent post about Databricks. Ali’s take on Databricks’ position in the Spark world includes:

Ali also walked me through customer use cases and adoption in wonderful detail. In general:

The story on those sectors, per Ali, is:  Read more

July 31, 2016

Notes on Spark and Databricks — technology

During my recent visit to Databricks, I of course talked a lot about technology — largely with Reynold Xin, but a bit with Ion Stoica as well. Spark 2.0 is just coming out now, and of course has a lot of enhancements. At a high level:

The majority of Databricks’ development efforts, however, are specific to its cloud service, rather than being donated to Apache for the Spark project. Some of the details are NDA, but it seems fair to mention at least:

Two of the technical initiatives Reynold told me about seemed particularly cool. Read more

July 31, 2016

Notes on Spark and Databricks — generalities

I visited Databricks in early July to chat with Ion Stoica and Reynold Xin. Spark also comes up in a large fraction of the conversations I have. So let’s do some catch-up on Databricks and Spark. In a nutshell:

I shall explain below. I also am posting separately about Spark evolution, especially Spark 2.0. I’ll also talk a bit in that post about Databricks’ proprietary/closed-source technology.

Spark is the replacement for Hadoop MapReduce.

This point is so obvious that I don’t know what to say in its support. The trend is happening, as originally decreed by Cloudera (and me), among others. People are rightly fed up with the limitations of MapReduce, and — niches perhaps aside — there are no serious alternatives other than Spark.

The greatest use for Spark seems to be the same as the canonical first use for MapReduce: data transformation. Also in line with the Spark/MapReduce analogy:  Read more

July 19, 2016

Notes from a long trip, July 19, 2016

For starters:

A running list of recent posts is:

Subjects I’d like to add to that list include:

Read more

January 25, 2016

Kafka and more

In a companion introduction to Kafka post, I observed that Kafka at its core is remarkably simple. Confluent offers a marchitecture diagram that illustrates what else is on offer, about which I’ll note:

Kafka offers little in the way of analytic data transformation and the like. Hence, it’s commonly used with companion products.  Read more

January 22, 2016

Cloudera in the cloud(s)

Cloudera released Version 2 of Cloudera Director, which is a companion product to Cloudera Manager focused specifically on the cloud. This led to a discussion about — you guessed it! — Cloudera and the cloud.

Making Cloudera run in the cloud has three major aspects:

Features new in this week’s release of Cloudera Director include:

I.e., we’re talking about some pretty basic/checklist kinds of things. Cloudera Director is evidently working for Amazon AWS and Google GCP, and planned for Windows Azure, VMware and OpenStack.

As for porting, let me start by noting: Read more

January 14, 2016

BI and quasi-DBMS

I’m on two overlapping posting kicks, namely “lessons from the past” and “stuff I keep saying so might as well also write down”. My recent piece on Oracle as the new IBM is an example of both themes. In this post, another example, I’d like to memorialize some points I keep making about business intelligence and other analytics. In particular:

Similarly, BI has often been tied to data integration/ETL (Extract/Transform/Load) functionality.* But I won’t address that subject further at this time.

*In the Hadoop/Spark era, that’s even truer of other analytics than it is of BI.

My top historical examples include:

Read more

Next Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:


Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.