April 30, 2014

Spark on fire

Spark is on the rise, to an even greater degree than I thought last month.

*Yes, my fingerprints are showing again.

The most official description of what Spark now contains is probably the “Spark ecosystem” diagram from Databricks. However, at the time of this writing it is slightly out of date, as per some email from Databricks CEO Ion Stoica (quoted with permission):

… but if I were to redraw it, SparkSQL will replace Shark, and Shark will eventually become a thin layer above SparkSQL and below BlinkDB.

With this change, all the modules on top of Spark (i.e., SparkStreaming, SparkSQL, GraphX, and MLlib) are part of the Spark distribution. You can think of these modules as libraries that come with Spark.

Read more

February 9, 2014

Distinctions in SQL/Hadoop integration

Ever more products try to integrate SQL with Hadoop, and discussions of them seem confused, in line with Monash’s First Law of Commercial Semantics. So let’s draw some distinctions, starting with (and these overlap):

In particular:

Let’s go to some examples. Read more

August 24, 2013

Hortonworks business notes

Hortonworks did a business-oriented round of outreach, talking with at least Derrick Harris and me. Notes  from my call — for which Rob Bearden* didn’t bother showing up — include, in no particular order:

*Speaking of CEO Bearden, an interesting note from Derrick’s piece is that Bearden is quoted as saying “I started this company from day one …”, notwithstanding that the now-departed Eric Baldeschwieler was founding CEO.

In Hortonworks’ view, Hadoop adopters typically start with a specific use case around a new type of data, such as clickstream, sensor, server log, geolocation, or social.  Read more

August 6, 2013

Hortonworks, Hadoop, Stinger and Hive

I chatted yesterday with the Hortonworks gang. The main subject was Hortonworks’ approach to SQL-on-Hadoop — commonly called Stinger —  but at my request we cycled through a bunch of other topics as well. Company-specific notes include:

Our deployment and use case discussions were a little confused, because a key part of Hortonworks’ strategy is to support and encourage the idea of combining use cases and workloads on a single cluster. But I did hear:

*By the way — Teradata seems serious about pushing the UDA as a core message.

Ecosystem notes, in Hortonworks’ perception, included:

I also asked specifically about OpenStack. Hortonworks is a member of the OpenStack project, contributes nontrivially to Swift and other subprojects, and sees Rackspace as an important partner. But despite all that, I think strong Hadoop/OpenStack integration is something for the indefinite future.

Hortonworks’ views about Hadoop 2.0 start from the premise that its goal is to support running a multitude of workloads on a single cluster. (See, for example, what I previously posted about Tez and YARN.) Timing notes for Hadoop 2.0 include:

Frankly, I think Cloudera’s earlier and necessarily incremental Hadoop 2 rollout was a better choice than Hortonworks’ later big bang, even though the core-mission aspect of Hadoop 2.0 is what was least ready. HDFS (Hadoop Distributed File System) performance, NameNode failover and so on were well worth having, and it’s more than a year between Cloudera starting supporting them and when Hortonworks is offering Hadoop 2.0.

Hortonworks’ approach to doing SQL-on-Hadoop can be summarized simply as “Make Hive into as good an analytic RDBMS as possible, all in open source”. Key elements include:  Read more

June 23, 2013

Hadoop news and rumors, June 23, 2013

Cloudera

*Of course, there will always be exceptions. E.g., some formats can be updated on a short-request basis, while others can only be written to via batch conversions.

Everybody else

March 18, 2013

DBMS development and other subjects

The cardinal rules of DBMS development

Rule 1: Developing a good DBMS requires 5-7 years and tens of millions of dollars.

That’s if things go extremely well.

Rule 2: You aren’t an exception to Rule 1. 

In particular:

DBMS with Hadoop underpinnings …

… aren’t exceptions to the cardinal rules of DBMS development. That applies to Impala (Cloudera), Stinger (Hortonworks), and Hadapt, among others. Fortunately, the relevant vendors seem to be well aware of this fact. Read more

March 11, 2013

Hadoop execution enhancements

Hadoop 2.0/YARN is the first big step in evolving Hadoop beyond a strict Map/Reduce paradigm, in that it at least allows for the possibility of non- or beyond-MapReduce processing engines. While YARN didn’t meet its target of general availability around year-end 2012, Arun Murthy of Hortonworks told me recently that:

Arun further told me about Tez, the next-generation Hadoop processing engine he’s working on, which he also discussed in a recent blog post:

With the emergence of Apache Hadoop YARN as the basis of next generation data-processing architectures, there is a strong need for an application which can execute a complex DAG [Directed Acyclic Graph] of tasks which can then be shared by Apache Pig, Apache Hive, Cascading and others.  The constrained DAG expressible in MapReduce (one set of maps followed by one set of reduces) often results in multiple MapReduce jobs which harm latency for short queries (overhead of launching multiple jobs) and throughput for large-scale queries (too much overhead for materializing intermediate job outputs to the filesystem). With Tez, we introduce a more expressive DAG of tasks, within a single application or job, that is better aligned with the required processing task – thus, for e.g., any given SQL query can be expressed as a single job using Tez.

This is similar to the approach of BDAS Spark:

Rather than being restricted to Maps and Reduces, Spark has more numerous primitive operations, including map, reduce, sample, join, and group-by. You can do these more or less in any order.

although Tez won’t match Spark’s richer list of primitive operations.

More specifically, there will be six primitive Tez operations:

A Map step would compound HDFS input, output sorting, and output shuffling; a Reduce step compounds — you guessed it! — input sorting, input shuffling, and HDFS output.

I can’t think of much in the way of algorithms that would be logically impossible in MapReduce yet possible in Tez. Rather, the main point of Tez seems to be performance, performance consistency, response-time consistency, and all that good stuff. Specific advantages that Arun and I talked about included:

March 1, 2013

Open source strategies

From time to time I advise a software vendor on how, whether, or to what extent it should offer its technology in open source. In summary, I believe:

Here’s why.

An “open source software” business model and strategy might include:

A “closed source software” business model and strategy might include:

Those look pretty similar to me.

Of course, there can still be differences between open and closed source. In particular: Read more

February 27, 2013

Hadoop distributions

Elephants! Elephants!
One elephant went out to play
Sat on a spider’s web one day.
They had such enormous fun
Called for another elephant to come.

Elephants! Elephants!
Two elephants went out to play
Sat on a spider’s web one day.
They had such enormous fun
Called for another elephant to come.

Elephants! Elephants!
Three elephants went out to play
Etc.

–  Popular children’s song

It’s Strata week, with much Hadoop news, some of which I’ve been briefed on and some of which I haven’t. Rather than delve into fine competitive details, let’s step back and consider some generalities. First, about Hadoop distributions and distro providers:

Most of the same observations could apply to Hadoop appliance vendors.

Read more

February 17, 2013

Notes and links, February 17, 2013

1. It boggles my mind that some database technology companies still don’t view compression as a major issue. Compression directly affects storage and bandwidth usage alike — for all kinds of storage (potentially including RAM) and for all kinds of bandwidth (network, I/O, and potentially on-server).

Trading off less-than-maximal compression so as to minimize CPU impact can make sense. Having no compression at all, however, is an admission of defeat.

2. People tend to misjudge Hadoop’s development pace in either of two directions. An overly expansive view is to note that some people working on Hadoop are trying to make it be all things for all people, and to somehow imagine those goals will soon be achieved. An overly narrow view is to note an important missing feature in Hadoop, and think there’s a big business to be made out of offering it alone.

At this point, I’d guess that Cloudera and Hortonworks have 500ish employees combined, many of whom are engineers. That allows for a low double-digit number of 5+ person engineering teams, along with a number of smaller projects. The most urgently needed features are indeed being built. On the other hand, a complete monument to computing will not soon emerge.

3. Schooner’s acquisition by SanDisk has led to the discontinuation of Schooner’s SQL DBMS SchoonerSQL. Schooner’s flash-optimized key-value store Membrain continues. I don’t have details, but the Membrain web page suggests both data store and cache use cases.

4. There’s considerable personnel movement at Boston-area database technology companies right now. Please ping me directly if you care.

Read more

Next Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.