Exadata

Analysis of Oracle Exadata and the Oracle Database Machine. Related subjects include:

July 19, 2016

Notes on vendor lock-in

Vendor lock-in is an important subject. Everybody knows that. But few of us realize just how complicated the subject is, nor how riddled it is with paradoxes. Truth be told, I wasn’t fully aware either. But when I set out to write this post, I found that it just kept growing longer.

1. The most basic form of lock-in is:

2. Enterprise vendor standardization is closely associated with lock-in. The core idea is that you have a mandate or strong bias toward having different apps run over the same platforms, because:

3. That last point is double-edged; you have more power over suppliers to whom you give more business, but they also have more power over you. The upshot is often an ELA (Enterprise License Agreement), which commonly works:

Read more

December 31, 2015

Oracle as the new IBM — has a long decline started?

When I find myself making the same observation fairly frequently, that’s a good impetus to write a post based on it. And so this post is based on the thought that there are many analogies between:

And when you look at things that way, Oracle seems to be swimming against the tide.

Drilling down, there are basically three things that can seriously threaten Oracle’s market position:

Oracle’s decline, if any, will be slow — but I think it has begun.

 

Oracle/IBM analogies

There’s a clear market lead in the core product category. IBM was dominant in mainframe computing. While not as dominant, Oracle is definitely a strong leader in high-end OTLP/mixed-use (OnLine Transaction Processing) RDBMS.

That market lead is even greater than it looks, because some of the strongest competitors deserve asterisks. Many of IBM’s mainframe competitors were “national champions” — Fujitsu and Hitachi in Japan, Bull in France and so on. Those were probably stronger competitors to IBM than the classic BUNCH companies (Burroughs, Univac, NCR, Control Data, Honeywell).

Similarly, Oracle’s strongest direct competitors are IBM DB2 and Microsoft SQL Server, each of which is sold primarily to customers loyal to the respective vendors’ full stacks. SAP is now trying to play a similar game.

The core product is stable, secure, richly featured, and generally very mature. Duh.

The core product is complicated to administer — which provides great job security for administrators. IBM had JCL (Job Control Language). Oracle has a whole lot of manual work overseeing indexes. In each case, there are many further examples of the point. Edit: A Twitter discussion suggests the specific issue with indexes has been long fixed.

Niche products can actually be more reliable than the big, super-complicated leader. Tandem Nonstop computers were super-reliable. Simple, “embeddable” RDBMS — e.g. Progress or SQL Anywhere — in many cases just work. Still, if you want one system to run most of your workload 24×7, it’s natural to choose the category leader. Read more

October 15, 2015

Couchbase 4.0 and related subjects

I last wrote about Couchbase in November, 2012, around the time of Couchbase 2.0. One of the many new features I mentioned then was secondary indexing. Ravi Mayuram just checked in to tell me about Couchbase 4.0. One of the important new features he mentioned was what I think he said was Couchbase’s “first version” of secondary indexing. Obviously, I’m confused.

Now that you’re duly warned, let me remind you of aspects of Couchbase timeline.

Technical notes on Couchbase 4.0 — and related riffs :) — start: Read more

July 15, 2014

The point of predicate pushdown

Oracle is announcing today what it’s calling “Oracle Big Data SQL”. As usual, I haven’t been briefed, but highlights seem to include:

And by the way – Oracle Big Data SQL is NOT “SQL-on-Hadoop” as that term is commonly construed, unless the complete Oracle DBMS is running on every node of a Hadoop cluster.

Predicate pushdown is actually a simple concept:

“Predicate pushdown” gets its name from the fact that portions of SQL statements, specifically ones that filter data, are properly referred to as predicates. They earn that name because predicates in mathematical logic and clauses in SQL are the same kind of thing — statements that, upon evaluation, can be TRUE or FALSE for different values of variables or data.

The most famous example of predicate pushdown is Oracle Exadata, with the story there being:

Oracle evidently calls this “SmartScan”, and says Oracle Big Data SQL does something similar with predicate pushdown into Hadoop.

Oracle also hints at using predicate pushdown to do non-tabular operations on the non-relational systems, rather than shoehorning operations on multi-structured data into the Oracle DBMS, but my details on that are sparse.

Related link

July 14, 2014

21st Century DBMS success and failure

As part of my series on the keys to and likelihood of success, I outlined some examples from the DBMS industry. The list turned out too long for a single post, so I split it up by millennia. The part on 20th Century DBMS success and failure went up Friday; in this one I’ll cover more recent events, organized in line with the original overview post. Categories addressed will include analytic RDBMS (including data warehouse appliances), NoSQL/non-SQL short-request DBMS, MySQL, PostgreSQL, NewSQL and Hadoop.

DBMS rarely have trouble with the criterion “Is there an identifiable buying process?” If an enterprise is doing application development projects, a DBMS is generally chosen for each one. And so the organization will generally have a process in place for buying DBMS, or accepting them for free. Central IT, departments, and — at least in the case of free open source stuff — developers all commonly have the capacity for DBMS acquisition.

In particular, at many enterprises either departments have the ability to buy their own analytic technology, or else IT will willingly buy and administer things for a single department. This dynamic fueled much of the early rise of analytic RDBMS.

Buyer inertia is a greater concern.

A particularly complex version of this dynamic has played out in the market for analytic RDBMS/appliances.

Otherwise I’d say:  Read more

November 10, 2013

RDBMS and their bundle-mates

Relational DBMS used to be fairly straightforward product suites, which boiled down to:

Now, however, most RDBMS are sold as part of something bigger.

Read more

July 20, 2013

The refactoring of everything

I’ll start with three observations:

As written, that’s probably pretty obvious. Even so, it’s easy to forget just how pervasive the refactoring is and is likely to be. Let’s survey some examples first, and then speculate about consequences. Read more

March 24, 2013

Appliances, clusters and clouds

I believe:

I shall explain.

Arguments for hosting applications on some kind of cluster include:

Arguments specific to the public cloud include:

That’s all pretty compelling. However, these are not persuasive reasons to put everything on a SINGLE cluster or cloud. They could as easily lead you to have your VMware cluster and your Exadata rack and your Hadoop cluster and your NoSQL cluster and your object storage OpenStack cluster — among others — all while participating in several different public clouds as well.

Why would you not move work into a cluster at all? First, if ain’t broken, you might not want to fix it. Some of the cluster options make it easy for you to consolidate existing workloads — that’s a central goal of VMware and Exadata — but others only make sense to adopt in connection with new application projects. Second, you might just want device locality. I have a gaming-class PC next to my desk; it drives a couple of monitors; I like that arrangement. Away from home I carry a laptop computer instead. Arguments can be made for small remote-office servers as well.

Read more

February 17, 2013

Notes and links, February 17, 2013

1. It boggles my mind that some database technology companies still don’t view compression as a major issue. Compression directly affects storage and bandwidth usage alike — for all kinds of storage (potentially including RAM) and for all kinds of bandwidth (network, I/O, and potentially on-server).

Trading off less-than-maximal compression so as to minimize CPU impact can make sense. Having no compression at all, however, is an admission of defeat.

2. People tend to misjudge Hadoop’s development pace in either of two directions. An overly expansive view is to note that some people working on Hadoop are trying to make it be all things for all people, and to somehow imagine those goals will soon be achieved. An overly narrow view is to note an important missing feature in Hadoop, and think there’s a big business to be made out of offering it alone.

At this point, I’d guess that Cloudera and Hortonworks have 500ish employees combined, many of whom are engineers. That allows for a low double-digit number of 5+ person engineering teams, along with a number of smaller projects. The most urgently needed features are indeed being built. On the other hand, a complete monument to computing will not soon emerge.

3. Schooner’s acquisition by SanDisk has led to the discontinuation of Schooner’s SQL DBMS SchoonerSQL. Schooner’s flash-optimized key-value store Membrain continues. I don’t have details, but the Membrain web page suggests both data store and cache use cases.

4. There’s considerable personnel movement at Boston-area database technology companies right now. Please ping me directly if you care.

Read more

February 6, 2013

Key questions when selecting an analytic RDBMS

I recently complained that the Gartner Magic Quadrant for Data Warehouse DBMS conflates many use cases into one set of rankings. So perhaps now would be a good time to offer some thoughts on how to tell use cases apart. Assuming you know that you really want to manage your analytic database with a relational DBMS, the first questions you ask yourself could be:

Let’s drill down. Read more

Next Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.