Predictive modeling and advanced analytics

Discussion of technologies and vendors in the overlapping areas of predictive analytics, predictive modeling, data mining, machine learning, Monte Carlo analysis, and other “advanced” analytics.

December 16, 2014

WibiData’s approach to predictive modeling and experimentation

A conversation I have too often with vendors goes something like:

That was the genesis of some tidbits I recently dropped about WibiData and predictive modeling, especially but not only in the area of experimentation. However, Wibi just reversed course and said it would be OK for me to tell more or less the full story, as long as I note that we’re talking about something that’s still in beta test, with all the limitations (to the product and my information alike) that beta implies.

As you may recall:

With that as background, WibiData’s approach to predictive modeling as of its next release will go something like this: Read more

December 12, 2014

Notes and links, December 12, 2014

1. A couple years ago I wrote skeptically about integrating predictive modeling and business intelligence. I’m less skeptical now.

For starters:

I’ve also heard a couple of ideas about how predictive modeling can support BI. One is via my client Omer Trajman, whose startup ScalingData is still semi-stealthy, but says they’re “working at the intersection of big data and IT operations”. The idea goes something like this:

Makes sense to me.

* The word “cluster” could have been used here in a couple of different ways, so I decided to avoid it altogether.

Finally, I’m hearing a variety of “smart ETL/data preparation” and “we recommend what columns you should join” stories. I don’t know how much machine learning there’s been in those to date, but it’s usually at least on the roadmap to make the systems (yet) smarter in the future. The end benefit is usually to facilitate BI.

2. Discussion of graph DBMS can get confusing. For example: Read more

November 30, 2014

Thoughts and notes, Thanksgiving weekend 2014

I’m taking a few weeks defocused from work, as a kind of grandpaternity leave. That said, the venue for my Dances of Infant Calming is a small-but-nice apartment in San Francisco, so a certain amount of thinking about tech industries is inevitable. I even found time last Tuesday to meet or speak with my clients at WibiData, MemSQL, Cloudera, Citus Data, and MongoDB. And thus:

1. I’ve been sloppy in my terminology around “geo-distribution”, in that I don’t always make it easy to distinguish between:

The latter case can be subdivided further depending on whether multiple copies of the data can accept first writes (aka active-active, multi-master, or multi-active), or whether there’s a clear single master for each part of the database.

What made me think of this was a phone call with MongoDB in which I learned that the limit on number of replicas had been raised from 12 to 50, to support the full-replication/latency-reduction use case.

2. Three years ago I posted about agile (predictive) analytics. One of the points was:

… if you change your offers, prices, ad placement, ad text, ad appearance, call center scripts, or anything else, you immediately gain new information that isn’t well-reflected in your previous models.

Subsequently I’ve been hearing more about predictive experimentation such as bandit testing. WibiData, whose views are influenced by a couple of Very Famous Department Store clients (one of which is Macy’s), thinks experimentation is quite important. And it could be argued that experimentation is one of the simplest and most direct ways to increase the value of your data.

3. I’d further say that a number of developments, trends or possibilities I’m seeing are or could be connected. These include agile and experimental predictive analytics in general, as noted in the previous point, along with:  Read more

November 2, 2014

Notes on predictive modeling, November 2, 2014

Following up on my notes on predictive modeling post from three weeks ago, I’d like to tackle some areas of recurring confusion.

Why are we modeling?

Ultimately, there are two reasons to model some aspect of your business:

How precise do models need to be?

Use cases vary greatly with respect to the importance of modeling precision. If you’re doing an expensive mass mailing, 1% additional accuracy is a big deal. But if you’re doing root cause analysis, a 10% error may be immaterial.

Who is doing the work?

It is traditional to have a modeling department, of “data scientists” or SAS programmers as the case may be. While it seems cool to put predictive modeling straight in the hands of business users — some business users, at least — it’s rare for them to use predictive modeling tools more sophisticated than Excel. For example, KXEN never did all that well.

That said, I support the idea of putting more modeling in the hands of business users. Just be aware that doing so is still a small business at this time.

“Operationalizing” predictive models

The topic of “operationalizing” models arises often, and it turns out to be rather complex. Usually, to operationalize a model, you need: Read more

November 2, 2014

Analytics for lots and lots of business users

A common marketing theme in the 2010s decade has been to claim that you make analytics available to many business users, as opposed to your competition, who only make analytics available to (pick one):

Versions of this claim were also common in the 1970s, 1980s, 1990s and 2000s.

Some of that is real. In particular:

Even so, for most analytic tools, power users tend to be:

Asserting otherwise is rarely more than marketing hype.

Related link

October 26, 2014

Datameer at the time of Datameer 5.0

Datameer checked in, having recently announced general availability of Datameer 5.0. So far as I understood, Datameer is still clearly in the investigative analytics business, in that:

Key aspects include:

Read more

October 10, 2014

Notes on predictive modeling, October 10, 2014

As planned, I’m getting more active in predictive modeling. Anyhow …

1. I still believe most of what I said in a July, 2013 predictive modeling catch-all post. However, I haven’t heard as much subsequently about Ayasdi as I had expected to.

2. The most controversial part of that post was probably the claim:

I think the predictive modeling state of the art has become:

  • Cluster in some way.
  • Model separately on each cluster.

In particular:

3. Nutonian is now a client. I just had my first meeting with them this week. To a first approximation, they’re somewhat like KXEN (sophisticated math, non-linear models, ease of modeling, quasi-automagic feature selection), but with differences that start: Read more

October 5, 2014

Spark vs. Tez, revisited

I’m on record as noting and agreeing with an industry near-consensus that Spark, rather than Tez, will be the replacement for Hadoop MapReduce. I presumed that Hortonworks, which is pushing Tez, disagreed. But Shaun Connolly of Hortonworks suggested a more nuanced view. Specifically, Shaun tweeted thoughts including:

Tez vs Spark = Apples vs Oranges.

Spark is general-purpose engine with elegant APIs for app devs creating modern data-driven apps, analytics, and ML algos.

Tez is a framework for expressing purpose-built YARN-based DAGs; its APIs are for ISVs & engine/tool builders who embed it

[For example], Hive embeds Tez to convert its SQL needs into purpose-built DAGs expressed optimally and leveraging YARN

That said, I haven’t yet had a chance to understand what advantages Tez might have over Spark in the use cases that Shaun relegates it to.

Related link

September 28, 2014

Some stuff on my mind, September 28, 2014

1. I wish I had some good, practical ideas about how to make a political difference around privacy and surveillance. Nothing else we discuss here is remotely as important. I presumably can contribute an opinion piece to, more or less, the technology publication(s) of my choice; that can have a small bit of impact. But I’d love to do better than that. Ideas, anybody?

2. A few thoughts on cloud, colocation, etc.:

3. As for the analytic DBMS industry: Read more

September 15, 2014

Misconceptions about privacy and surveillance

Everybody is confused about privacy and surveillance. So I’m renewing my efforts to consciousness-raise within the tech community. For if we don’t figure out and explain the issues clearly enough, there isn’t a snowball’s chance in Hades our lawmakers will get it right without us.

How bad is the confusion? Well, even Edward Snowden is getting it wrong. A Wired interview with Snowden says:

“If somebody’s really watching me, they’ve got a team of guys whose job is just to hack me,” he says. “I don’t think they’ve geolocated me, but they almost certainly monitor who I’m talking to online. Even if they don’t know what you’re saying, because it’s encrypted, they can still get a lot from who you’re talking to and when you’re talking to them.”

That is surely correct. But the same article also says:

“We have the means and we have the technology to end mass surveillance without any legislative action at all, without any policy changes.” The answer, he says, is robust encryption. “By basically adopting changes like making encryption a universal standard—where all communications are encrypted by default—we can end mass surveillance not just in the United States but around the world.”

That is false, for a myriad of reasons, and indeed is contradicted by the first excerpt I cited.

What privacy/surveillance commentators evidently keep forgetting is:

So closing down a few vectors of privacy attack doesn’t solve the underlying problem at all.

Worst of all, commentators forget that the correct metric for danger is not just harmful information use, but chilling effects on the exercise of ordinary liberties. But in the interest of space, I won’t reiterate that argument in this post.

Perhaps I can refresh your memory why each of those bulleted claims is correct. Major categories of privacy-destroying information (raw or derived) include:

Read more

Next Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.