December 7, 2014

Notes on the Hortonworks IPO S-1 filing

Given my stock research experience, perhaps I should post about Hortonworks’ initial public offering S-1 filing. :) For starters, let me say:

And, perhaps of interest only to me — there are approximately 50 references to YARN in the Hortonworks S-1, but only 1 mention of Tez.

Read more

November 30, 2014

Thoughts and notes, Thanksgiving weekend 2014

I’m taking a few weeks defocused from work, as a kind of grandpaternity leave. That said, the venue for my Dances of Infant Calming is a small-but-nice apartment in San Francisco, so a certain amount of thinking about tech industries is inevitable. I even found time last Tuesday to meet or speak with my clients at WibiData, MemSQL, Cloudera, Citus Data, and MongoDB. And thus:

1. I’ve been sloppy in my terminology around “geo-distribution”, in that I don’t always make it easy to distinguish between:

The latter case can be subdivided further depending on whether multiple copies of the data can accept first writes (aka active-active, multi-master, or multi-active), or whether there’s a clear single master for each part of the database.

What made me think of this was a phone call with MongoDB in which I learned that the limit on number of replicas had been raised from 12 to 50, to support the full-replication/latency-reduction use case.

2. Three years ago I posted about agile (predictive) analytics. One of the points was:

… if you change your offers, prices, ad placement, ad text, ad appearance, call center scripts, or anything else, you immediately gain new information that isn’t well-reflected in your previous models.

Subsequently I’ve been hearing more about predictive experimentation such as bandit testing. WibiData, whose views are influenced by a couple of Very Famous Department Store clients (one of which is Macy’s), thinks experimentation is quite important. And it could be argued that experimentation is one of the simplest and most direct ways to increase the value of your data.

3. I’d further say that a number of developments, trends or possibilities I’m seeing are or could be connected. These include agile and experimental predictive analytics in general, as noted in the previous point, along with:  Read more

October 5, 2014

Streaming for Hadoop

The genesis of this post is that:

Of course, we should hardly assume that what the Hadoop distro vendors favor will be the be-all and end-all of streaming. But they are likely to at least be influential players in the area.

In the parts of the problem that Cloudera emphasizes, the main tasks that need to be addressed are: Read more

September 21, 2014

Data as an asset

We all tend to assume that data is a great and glorious asset. How solid is this assumption?

*”Our assets are our people, capital and reputation. If any of these is ever diminished, the last is the most difficult to restore.” I love that motto, even if Goldman Sachs itself eventually stopped living up to it. If nothing else, my own business depends primarily on my reputation and information.

This all raises the idea – if you think data is so valuable, maybe you should get more of it. Areas in which enterprises have made significant and/or successful investments in data acquisition include:  Read more

June 8, 2014

Optimism, pessimism, and fatalism — fault-tolerance, Part 2

The pessimist thinks the glass is half-empty.
The optimist thinks the glass is half-full.
The engineer thinks the glass was poorly designed.

Most of what I wrote in Part 1 of this post was already true 15 years ago. But much gets added in the modern era, considering that:

And so there’s been innovation in numerous cluster-related subjects, two of which are:

Distributed database consistency

When a distributed database lives up to the same consistency standards as a single-node one, distributed query is straightforward. Performance may be an issue, however, which is why we have seen a lot of:

But in workloads with low-latency writes, living up to those standards is hard. The 1980s approach to distributed writing was two-phase commit (2PC), which may be summarized as:  Read more

May 1, 2014

MemSQL update

I stopped by MemSQL last week, and got a range of new or clarified information. For starters:

On the more technical side: Read more

April 30, 2014

Hardware and storage notes

My California trip last week focused mainly on software — duh! — but I had some interesting hardware/storage/architecture discussions as well, especially in the areas of:

I also got updated as to typical Hadoop hardware.

If systems are designed at the whole-rack level or higher, then there can be much more flexibility and efficiency in terms of mixing and connecting CPU, RAM and storage. The Google/Facebook/Amazon cool kids are widely understood to be following this approach, so others are naturally considering it as well. My most interesting of several mentions of that point was when I got the chance to talk with Berkeley computer architecture guru Dave Patterson, who’s working on plans for 100-petabyte/terabit-networking kinds of systems, for usage after 2020 or so. (If you’re interested, you might want to contact him; I’m sure he’d love more commercial sponsorship.)

One of Dave’s design assumptions is that Moore’s Law really will end soon (or at least greatly slow down), if by Moore’s Law you mean that every 18 months or so one can get twice as many transistors onto a chip of the same area and cost than one could before. However, while he thinks that applies to CPU and RAM, Dave thinks flash is an exception. I gathered that he thinks the power/heat reasons for Moore’s Law to end will be much harder to defeat than the other ones; note that flash, because of what it’s used for, has vastly less power running through it than CPU or RAM do.

Read more

April 30, 2014

Cloudera, Impala, data warehousing and Hive

There’s much confusion about Cloudera’s SQL plans and beliefs, and the company has mainly itself to blame. That said, here’s what I think is going on.

And of course, as vendors so often do, Cloudera generally overrates both the relative maturity of Impala and the relative importance of the use cases in which its offerings – Impala or otherwise – shine.

Related links

April 30, 2014

Spark on fire

Spark is on the rise, to an even greater degree than I thought last month.

*Yes, my fingerprints are showing again.

The most official description of what Spark now contains is probably the “Spark ecosystem” diagram from Databricks. However, at the time of this writing it is slightly out of date, as per some email from Databricks CEO Ion Stoica (quoted with permission):

… but if I were to redraw it, SparkSQL will replace Shark, and Shark will eventually become a thin layer above SparkSQL and below BlinkDB.

With this change, all the modules on top of Spark (i.e., SparkStreaming, SparkSQL, GraphX, and MLlib) are part of the Spark distribution. You can think of these modules as libraries that come with Spark.

Read more

December 8, 2013

DataStax/Cassandra update

Cassandra’s reputation in many quarters is:

This has led competitors to use, and get away with, sales claims along the lines of “Well, if you really need geo-distribution and can’t wait for us to catch up — which we soon will! — you should use Cassandra. But otherwise, there are better choices.”

My friends at DataStax, naturally, don’t think that’s quite fair. And so I invited them — specifically Billy Bosworth and Patrick McFadin — to educate me. Here are some highlights of that exercise.

DataStax and Cassandra have some very impressive accounts, which don’t necessarily revolve around geo-distribution. Netflix, probably the flagship Cassandra user — since Cassandra inventor Facebook adopted HBase instead — actually hasn’t been using the geo-distribution feature. Confidential accounts include:

DataStax and Cassandra won’t necessarily win customer-brag wars versus MongoDB, Couchbase, or even HBase, but at least they’re strongly in the competition.

DataStax claims that simplicity is now a strength. There are two main parts to that surprising assertion. Read more

Next Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.