Vertica Systems

Analysis of columnar data warehouse DBMS vendor Vertica Systems. Related subjects include:

August 22, 2017

Imanis Data

I talked recently with the folks at Imanis Data. For starters:

Read more

June 16, 2017

Generally available Kudu

I talked with Cloudera about Kudu in early May. Besides giving me a lot of information about Kudu, Cloudera also helped confirm some trends I’m seeing elsewhere, including:

Now let’s talk about Kudu itself. As I discussed at length in September 2015, Kudu is:

Kudu’s adoption and roll-out story starts: Read more

April 17, 2017


Interana has an interesting story, in technology and business model alike. For starters:

And to be clear — if we leave aside any questions of marketing-name sizzle, this really is business intelligence. The closest Interana comes to helping with predictive modeling is giving its ad-hoc users inspiration as to where they should focus their modeling attention.

Interana also has an interesting twist in its business model, which I hope can be used successfully by other enterprise software startups as well. Read more

August 28, 2016

Are analytic RDBMS and data warehouse appliances obsolete?

I used to spend most of my time — blogging and consulting alike — on data warehouse appliances and analytic DBMS. Now I’m barely involved with them. The most obvious reason is that there have been drastic changes in industry structure:

Simply reciting all that, however, begs the question of whether one should still care about analytic RDBMS at all.

My answer, in a nutshell, is:

Analytic RDBMS — whether on premises in software, in the form of data warehouse appliances, or in the cloud – are still great for hard-core business intelligence, where “hard-core” can refer to ad-hoc query complexity, reporting/dashboard concurrency, or both. But they aren’t good for much else.

Read more

September 7, 2014

An idealized log management and analysis system — from whom?

I’ve talked with many companies recently that believe they are:

At best, I think such competitive claims are overwrought. Still, it’s a genuinely important subject and opportunity, so let’s consider what a great log management and analysis system might look like.

Much of this discussion could apply to machine-generated data in general. But right now I think more players are doing product management with an explicit conception either of log management or event-series analytics, so for this post I’ll share that focus too.

A short answer might be “Splunk, but with more analytic functionality and more scalable performance, at lower cost, plus numerous coupons for free pizza.” A more constructive and bottoms-up approach might start with:  Read more

July 14, 2014

21st Century DBMS success and failure

As part of my series on the keys to and likelihood of success, I outlined some examples from the DBMS industry. The list turned out too long for a single post, so I split it up by millennia. The part on 20th Century DBMS success and failure went up Friday; in this one I’ll cover more recent events, organized in line with the original overview post. Categories addressed will include analytic RDBMS (including data warehouse appliances), NoSQL/non-SQL short-request DBMS, MySQL, PostgreSQL, NewSQL and Hadoop.

DBMS rarely have trouble with the criterion “Is there an identifiable buying process?” If an enterprise is doing application development projects, a DBMS is generally chosen for each one. And so the organization will generally have a process in place for buying DBMS, or accepting them for free. Central IT, departments, and — at least in the case of free open source stuff — developers all commonly have the capacity for DBMS acquisition.

In particular, at many enterprises either departments have the ability to buy their own analytic technology, or else IT will willingly buy and administer things for a single department. This dynamic fueled much of the early rise of analytic RDBMS.

Buyer inertia is a greater concern.

A particularly complex version of this dynamic has played out in the market for analytic RDBMS/appliances.

Otherwise I’d say:  Read more

June 18, 2014

Using multiple data stores

I’m commonly asked to assess vendor claims of the kind:

So I thought it might be useful to quickly review some of the many ways organizations put multiple data stores to work. As usual, my bottom line is:

Horses for courses

It’s now widely accepted that different data managers are better for different use cases, based on distinctions such as:

Vendors are part of this consensus; already in 2005 I observed

For all practical purposes, there are no DBMS vendors left advocating single-server strategies.

Vendor agreement has become even stronger in the interim, as evidenced by Oracle/MySQL, IBM/Netezza, Oracle’s NoSQL dabblings, and various companies’ Hadoop offerings.

Multiple data stores for a single application

We commonly think of one data manager managing one or more databases, each in support of one or more applications. But the other way around works too; it’s normal for a single application to invoke multiple data stores. Indeed, all but the strictest relational bigots would likely agree:  Read more

May 1, 2014

MemSQL update

I stopped by MemSQL last week, and got a range of new or clarified information. For starters:

On the more technical side: Read more

March 23, 2014

Wants vs. needs

In 1981, Gerry Chichester and Vaughan Merlyn did a user-survey-based report about transaction-oriented fourth-generation languages, the leading application development technology of their day. The report included top-ten lists of important features during the buying cycle and after implementation. The items on each list were very similar — but the order of the items was completely different. And so the report highlighted what I regard as an eternal truth of the enterprise software industry:

What users value in the product-buying process is quite different from what they value once a product is (being) put into use.

Here are some thoughts about how that comes into play today.

Wants outrunning needs

1. For decades, BI tools have been sold in large part via demos of snazzy features the CEO would like to have on his desk. First it was pretty colors; then it was maps; now sometimes it’s “real-time” changing displays. Other BI features, however, are likely to be more important in practice.

2. In general, the need for “real-time” BI data freshness is often exaggerated. If you’re a human being doing a job that’s also often automated at high speed — for example network monitoring or stock trading — there’s a good chance you need fully human real-time BI. Otherwise, how much does a 5-15 minute delay hurt? Even if you’re monitoring website sell-through — are your business volumes really high enough that 5 minutes matters much? eBay answered “yes” to that question many years ago, but few of us work for businesses anywhere near eBay’s scale.

Even so, the want for speed keeps growing stronger. :)

3. Similarly, some desires for elastic scale-out are excessive. Your website selling koi pond accessories should always run well on a single server. If you diversify your business to the point that that’s not true, you’ll probably rewrite your app by then as well.

4. Some developers want to play with cool new tools. That doesn’t mean those tools are the best choice for the job. In particular, boring old SQL has merits — such as joins! — that shiny NoSQL hasn’t yet replicated.

5. Some developers, on the other hand, want to keep using their old tools, on which they are their employers’ greatest experts. That doesn’t mean those tools are the best choice for the job either.

6. More generally, some enterprises insist on brand labels that add little value but lots of expense. Yes, there are many benefits to vendor consolidation, and you may avoid many headaches if you stick with not-so-cutting-edge technology. But “enterprise-grade” hardware failure rates may not differ enough from “consumer-grade” ones to be worth paying for.

Read more

March 17, 2014

Notes and comments, March 17, 2014

I have ever more business-advice posts up on Strategic Messaging. Recent subjects include pricing and stealth-mode marketing. Other stuff I’ve been up to includes:

The Spark buzz keeps increasing; almost everybody I talk with expects Spark to win big, probably across several use cases.

Disclosure: I’ll soon be in a substantial client relationship with Databricks, hoping to improve their stealth-mode marketing. :D

The “real-time analytics” gold rush I called out last year continues. A large fraction of the vendors I talk with have some variant of “real-time analytics” as a central message.

Basho had a major change in leadership. A Twitter exchange ensued. :) Joab Jackson offered a more sober — figuratively and literally — take.

Hadapt laid off its sales and marketing folks, and perhaps some engineers as well. In a nutshell, Hadapt’s approach to SQL-on-Hadoop wasn’t selling vs. the many alternatives, and Hadapt is doubling down on poly-structured data*/schema-on-need.

*While Hadapt doesn’t to my knowledge use the term “poly-structured data”, some other vendors do. And so I may start using it more myself, at least when the poly-structured/multi-structured distinction actually seems significant.

WibiData is partnering with DataStax, WibiData is of course pleased to get access to Cassandra’s user base, which gave me the opportunity to ask why they thought Cassandra had beaten HBase in those accounts. The answer was performance and availability, while Cassandra’s traditional lead in geo-distribution wasn’t mentioned at all.

Disclosure: My fingerprints are all over that deal.

In other news, WibiData has had some executive departures as well, but seems to be staying the course on its strategy. I continue to think that WibiData has a really interesting vision about how to do large-data-volume interactive computing, and anybody in that space would do well to talk with them or at least look into the open source projects WibiData sponsors.

I encountered another apparently-popular machine-learning term — bandit model. It seems to be glorified A/B testing, and it seems to be popular. I think the point is that it tries to optimize for just how much you invest in testing unproven (for good or bad) alternatives.

I had an awkward set of interactions with Gooddata, including my longest conversations with them since 2009. Gooddata is in the early days of trying to offer an all-things-to-all-people analytic stack via SaaS (Software as a Service). I gather that Hadoop, Vertica, PostgreSQL (a cheaper Vertica alternative), Spark, Shark (as a faster version of Hive) and Cassandra (under the covers) are all in the mix — but please don’t hold me to those details.

I continue to think that computing is moving to a combination of appliances, clusters, and clouds. That said, I recently bought a new gaming-class computer, and spent many hours gaming on it just yesterday.* I.e., there’s room for general-purpose workstations as well. But otherwise, I’m not hearing anything that contradicts my core point.

*The last beta weekend for The Elder Scrolls Online; I loved Morrowind.

Next Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:


Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.