Log analysis

Discussion of how data warehousing and analytic technologies are applied to logfile analysis. Related subjects include:

June 14, 2017

Cloudera Altus

I talked with Cloudera before the recent release of Altus. In simplest terms, Cloudera’s cloud strategy aspires to:

In other words, Cloudera is porting its software to an important new platform.* And this port isn’t complete yet, in that Altus is geared only for certain workloads. Specifically, Altus is focused on “data pipelines”, aka data transformation, aka “data processing”, aka new-age ETL (Extract/Transform/Load). (Other kinds of workload are on the roadmap, including several different styles of Impala use.) So what about that is particularly interesting? Well, let’s drill down.

*Or, if you prefer, improving on early versions of the port.

Read more

April 17, 2017


Interana has an interesting story, in technology and business model alike. For starters:

And to be clear — if we leave aside any questions of marketing-name sizzle, this really is business intelligence. The closest Interana comes to helping with predictive modeling is giving its ad-hoc users inspiration as to where they should focus their modeling attention.

Interana also has an interesting twist in its business model, which I hope can be used successfully by other enterprise software startups as well. Read more

April 13, 2017

Analyzing the right data

0. A huge fraction of what’s important in analytics amounts to making sure that you are analyzing the right data. To a large extent, “the right data” means “the right subset of your data”.

1. In line with that theme:

2. Business intelligence interfaces today don’t look that different from what we had in the 1980s or 1990s. The biggest visible* changes, in my opinion, have been in the realm of better drilldown, ala QlikView and then Tableau. Drilldown, of course, is the main UI for business analysts and end users to subset data themselves.

*I used the word “visible” on purpose. The advances at the back end have been enormous, and much of that redounds to the benefit of BI.

3. I wrote 2 1/2 years ago that sophisticated predictive modeling commonly fit the template:

That continues to be tough work. Attempts to productize shortcuts have not caught fire.

Read more

October 21, 2016

Rapid analytics

“Real-time” technology excites people, and has for decades. Yet the actual, useful technology to meet “real-time” requirements remains immature, especially in cases which call for rapid human decision-making. Here are some notes on that conundrum.

1. I recently posted that “real-time” is getting real. But there are multiple technology challenges involved, including:

2. In early 2011, I coined the phrase investigative analytics, about which I said three main things: Read more

October 10, 2016

Notes on anomaly management

Then felt I like some watcher of the skies
When a new planet swims into his ken

— John Keats, “On First Looking Into Chapman’s Homer”

1. In June I wrote about why anomaly management is hard. Well, not only is it hard to do; it’s hard to talk about as well. One reason, I think, is that it’s hard to define what an anomaly is. And that’s a structural problem, not just a semantic one — if something is well enough understood to be easily described, then how much of an anomaly is it after all?

Artificial intelligence is famously hard to define for similar reasons.

“Anomaly management” and similar terms are not yet in the software marketing mainstream, and may never be. But naming aside, the actual subject matter is important.

2. Anomaly analysis is clearly at the heart of several sectors, including:

Each of those areas features one or both of the frameworks:

So if you want to identify, understand, avert and/or remediate bad stuff, data anomalies are the first place to look.

3. The “insights” promised by many analytics vendors — especially those who sell to marketing departments — are also often heralded by anomalies. Already in the 1970s, Walmart observed that red clothing sold particularly well in Omaha, while orange flew off the shelves in Syracuse. And so, in large college towns, they stocked their stores to the gills with clothing in the colors of the local football team. They also noticed that fancy dresses for little girls sold especially well in Hispanic communities … specifically for girls at the age of First Communion.

Read more

October 3, 2016

Notes on the transition to the cloud

1. The cloud is super-hot. Duh. And so, like any hot buzzword, “cloud” means different things to different marketers. Four of the biggest things that have been called “cloud” are:

Further, there’s always the idea of hybrid cloud, in which a vendor peddles private cloud systems (usually appliances) running similar technology stacks to what they run in their proprietary public clouds. A number of vendors have backed away from such stories, but a few are still pushing it, including Oracle and Microsoft.

This is a good example of Monash’s Laws of Commercial Semantics.

2. Due to economies of scale, only a few companies should operate their own data centers, aka true on-prem(ises). The rest should use some combination of colo, SaaS, and public cloud.

This fact now seems to be widely understood.

Read more

September 6, 2016

“Real-time” is getting real

I’ve been an analyst for 35 years, and debates about “real-time” technology have run through my whole career. Some of those debates are by now pretty much settled. In particular:

A big issue that does remain open is: How fresh does data need to be? My preferred summary answer is: As fresh as is needed to support the best decision-making. I think that formulation starts with several advantages:

Straightforward applications of this principle include: Read more

May 30, 2016

Adversarial analytics and other topics

Five years ago, in a taxonomy of analytic business benefits, I wrote:

A large fraction of all analytic efforts ultimately serve one or more of three purposes:

  • Marketing
  • Problem and anomaly detection and diagnosis
  • Planning and optimization

That continues to be true today. Now let’s add a bit of spin.

1. A large fraction of analytics is adversarial. In particular: Read more

October 15, 2015

Basho and Riak

Basho was on my (very short) blacklist of companies with whom I refuse to speak, because they have lied about the contents of previous conversations. But Tony Falco et al. are long gone from the company. So when Basho’s new management team reached out, I took the meeting.

For starters:

Basho’s product line has gotten a bit confusing, but as best I understand things the story is:

Technical notes on some of that include:  Read more

September 17, 2015

Rocana’s world

For starters:

Rocana portrays itself as offering next-generation IT operations monitoring software. As you might expect, this has two main use cases:

Rocana’s differentiation claims boil down to fast and accurate anomaly detection on large amounts of log data, including but not limited to:

Read more

Next Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:


Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.