Analytic technologies

Discussion of technologies related to information query and analysis. Related subjects include:

May 3, 2012

Big Data hype?

A reporter wrote in to ask whether investor interest in “Big Data” was justified or hype. (More precisely, that’s how I reinterpreted his questions. 🙂 ) His examples were Splunk’s IPO, Teradata’s stock price increase, and Birst’s financing. In a nutshell:

1. A great example of hype is that anybody is calling Birst a “Big Data” or “Big Data analytics” company. If anything, Birst is a “little data” analytics company that claims, as a differentiating feature, that it can handle ordinary-sized data sets as well. Read more

May 1, 2012

Thinking about market segments

It is a reasonable (over)simplification to say that my business boils down to:

One complication that commonly creeps in is that different groups of users have different buying practices and technology needs. Usually, I nod to that point in passing, perhaps by listing different application areas for a company or product. But now let’s address it head on. Whether or not you care about the particulars, I hope the sheer length of this post reminds you that there are many different market segments out there.

Last June I wrote:

In almost any IT decision, there are a number of environmental constraints that need to be acknowledged. Organizations may have standard vendors, favored vendors, or simply vendors who give them particularly deep discounts. Legacy systems are in place, application and system alike, and may or may not be open to replacement. Enterprises may have on-premise or off-premise preferences; SaaS (Software as a Service) vendors probably have multitenancy concerns. Your organization can determine which aspects of your system you’d ideally like to see be tightly integrated with each other, and which you’d prefer to keep only loosely coupled. You may have biases for or against open-source software. You may be pro- or anti-appliance. Some applications have a substantial need for elastic scaling. And some kinds of issues cut across multiple areas, such as budget, timeframe, security, or trained personnel.

I’d further say that it matters whether the buyer:

Now let’s map those considerations (and others) to some specific market segments. Read more

April 24, 2012

Three quick notes about derived data

I had one of “those” trips last week:

So please pardon me if things are a bit disjointed …

I’ve argued for a while that:

Here are a few notes on the derived data trend. Read more

April 7, 2012

Many kinds of memory-centric data management

I’m frequently asked to generalize in some way about in-memory or memory-centric data management. I can start:

Getting more specific than that is hard, however, because:

Consider, for example, some of the in-memory data management ideas kicking around. Read more

April 5, 2012

Human real-time

I first became an analyst in 1981. And so I was around for the early days of the movement from batch to interactive computing, as exemplified by:

Of course, wherever there is interactive computing, there is a desire for interaction so fast that users don’t notice any wait time. Dan Fylstra, when he was pitching me the early windowing system VisiOn, characterized this as response so fast that the user didn’t tap his fingers waiting.* And so, with the move to any kind of interactive computing at all came a desire that the interaction be quick-response/low-latency. Read more

April 4, 2012

IBM DB2 10

Shortly before Tuesday’s launch of DB2 10, IBM’s Conor O’Mahony checked in for a relatively non-technical briefing.* More precisely, this is about DB2 for “distributed” systems, aka LUW (Linux/Unix/Windows); some of the features have already been in the mainframe version of DB2 for a while. IBM is graciously permitting me to post the associated DB2 10 announcement slide deck.

*I hope any errors in interpretation are minor.

Major aspects of DB2 10 include new or improved capabilities in the areas of:

Of course, there are various other enhancements too, including to security (fine-grained access control), Oracle compatibility, and DB2 pureScale. Everything except the pureScale part is also reflected in IBM InfoSphere Warehouse, which is a near-superset of DB2.*

*Also, the data ingest part isn’t in base DB2.

Read more

March 26, 2012

Notes on the ClearStory Data launch, including an inaccurate quote from me

ClearStory Data launched, with nice coverage in the New York Times, Computerworld, and elsewhere. But from my standpoint, there were some serious problems:

I’m utterly disgusted with this whole mess, although after talking with her a lot I’m fine with CEO Sharmila Mulligan’s part in it, which is to say with ClearStory’s part in general.

*I avoid the term “platform” as much as possible; indeed, I still don’t really know what the “new platforms” part was supposed to refer to. The Frankenquote wound up with some odd grammar as well.

Actually, in principle I’m a pretty close adviser to ClearStory (for starters, they’re one of my stealth-mode clients). That hasn’t really ramped up yet; in particular, I haven’t had a technical deep dive. So for now I’ll just say:

Read more

March 16, 2012

Juggling analytic databases

I’d like to survey a few related ideas:

Here goes. Read more

March 9, 2012

Hardware and components — lessons from Teradata

I love talking with Carson Schmidt, chief of Teradata’s hardware engineering (among other things), even if I don’t always understand the details of what he’s talking about. It had been way too long since our last chat, so I requested another one. We were joined by Keith Muller, who I presume is pictured here. Takeaways included:

Read more

February 27, 2012

Translucent modeling, and the future of internet marketing

There’s a growing consensus that consumers require limits on the predictive modeling that is done about them. That’s a theme of the Obama Administration’s recent work on consumer data privacy; it’s central to other countries’ data retention regulations; and it’s specifically borne out by the recent Target-pursues-pregnant-women example. Whatever happens legally, I believe this also calls for a technical response, namely:

Consumers should be shown key factual and psychographic aspects of how they are modeled, and be given the chance to insist that marketers disregard any or all of those aspects.

I further believe that the resulting technology should be extended so that

information holders can collaborate by exchanging estimates for such key factors, rather than exchanging the underlying data itself.

To some extent this happens today, for example with attribution/de-anonymization or with credit scores; but I think it should be taken to another level of granularity.

My name for all this is translucent modeling, rather than “transparent”, the idea being that key points must be visible, but the finer details can be safely obscured.

Examples of dialog I think marketers should have with consumers include: Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.