Analytic technologies
Discussion of technologies related to information query and analysis. Related subjects include:
- Business intelligence
- Data warehousing
- (in Text Technologies) Text mining
- (in The Monash Report) Data mining
- (in The Monash Report) General issues in analytic technology
Vertica as an analytic platform
Vertica 5.0 is coming out today, and delivering the down payment on Vertica’s analytic platform strategy. In Vertica lingo, there’s now a Vertica SDK (Software Development Kit), featuring Vertica UDT(F)s* (User-Defined Transform Functions). Vertica UDT syntax basics start: Read more
| Categories: Analytic technologies, Data warehousing, GIS and geospatial, Predictive modeling and advanced analytics, RDF and graphs, Vertica Systems, Workload management | 7 Comments |
Temporal data, time series, and imprecise predicates
I’ve been confused about temporal data management for a while, because there are several different things going on.
- Date arithmetic. This of course has been around for a very long — er, for a very long time.
- Time-series-aware compression. This has been around for quite a while too.
- “Time travel”/snapshotting — preserving the state of the database at previous points in time. This is a matter of exposing (and not throwing away) the information you capture via MVCC (Multi-Version Concurrency Control) and/or append-only updates (as opposed to update-in-place). Those update strategies are increasingly popular for pretty much anything except update-intensive OLTP (OnLine Transaction Processing) DBMS, so time-travel/snapshotting is an achievable feature for most vendors.
- Bitemporal data access. This occurs when a fact has both a transaction timestamp and a separate validity duration. A Wikipedia article seems to cover the subject pretty well, and I touched on Teradata’s bitemporal plans back in 2009.
- Time series SQL extensions. Vertica explained its version of these to me a few days ago. I imagine Sybase IQ and other serious financial-trading market players have similar features.
In essence, the point of time series/event series SQL functionality is to do SQL against incomplete, imprecise, or derived data.* Read more
| Categories: Analytic technologies, Data types, Investment research and trading, Log analysis, Sybase, Telecommunications, Theory and architecture, Vertica Systems | 2 Comments |
Columnar DBMS vendor customer metrics
Last April, I asked some columnar DBMS vendors to share customer metrics. They answered, but it took until now to iron out a couple of details. Overall, the answers are pretty impressive. Read more
Investigative analytics and derived data: Enzee Universe 2011 talk
I’ll be speaking Monday, June 20 at IBM Netezza’s Enzee Universe conference. Thus, as is my custom:
- I’m posting draft slides.
- I’m encouraging comment (especially in the short time window before I have to actually give the talk).
- I’m offering links below to more detail on various subjects covered in the talk.
The talk concept started out as “advanced analytics” (as opposed to fast query, a subject amply covered in the rest of any Netezza event), as a lunch break in what is otherwise a detailed “best practices” session. So I suggested we constrain the subject by focusing on a specific application area — customer acquisition and retention, something of importance to almost any enterprise, and which exploits most areas of analytic technology. Then I actually prepared the slides — and guess what? The mix of subjects will be skewed somewhat more toward generalities than I first intended, specifically in the areas of investigative analytics and derived data. And, as always when I speak, I’ll try to raise consciousness about the issues of liberty and privacy, our options as a society for addressing them, and the crucial role we play as an industry in helping policymakers deal with these technologically-intense subjects.
Slide 3 refers back to a post I made last December, saying there are six useful things you can do with analytic technology:
- Operational BI/Analytically-infused operational apps: You can make an immediate decision.
- Planning and budgeting: You can plan in support of future decisions.
- Investigative analytics (multiple disciplines): You can research, investigate, and analyze in support of future decisions.
- Business intelligence: You can monitor what’s going on, to see when it necessary to decide, plan, or investigate.
- More BI: You can communicate, to help other people and organizations do these same things.
- DBMS, ETL, and other “platform” technologies: You can provide support, in technology or data gathering, for one of the other functions.
Slide 4 observes that investigative analytics:
- Is the most rapidly advancing of the six areas …
- … because it most directly exploits performance & scalability.
Slide 5 gives my simplest overview of investigative analytics technology to date: Read more
Notes and links, June 15, 2011
Five things: Read more
Metaphors amok
It all started when I disputed James Kobielus’ blogged claim that Hadoop is the nucleus of the next-generation cloud EDW. Jim posted again to reiterate the claim, only this time he wrote that all EDW vendors [will soon] bring Hadoop into their heart of their architectures. (All emphasis mine.)
That did it. I tweeted, in succession:
- Actually, I vote for Hadoop as the lungs of the EDW — first place of entry for essential nutrients.
- Data integration can be the heart of the EDW, pumping stuff around. RDBMS/analytic platform can be the brain.
- iPad-based dashboards that may engender envy, but which actually are only used occasionally and briefly … well, you get the picture.*
*Woody Allen said in Sleeper that the brain was his second-favorite organ.
Of course, that body of work was quickly challenged. Responses included: Read more
| Categories: Analytic technologies, Business intelligence, Data warehousing, EAI, EII, ETL, ELT, ETLT, Fun stuff, Hadoop, Humor, MapReduce | Leave a Comment |
Groupon-related thoughts on the future of advertising and e-commerce
There’s been a lot of debate about Groupon around its initial public offering, and I find the Groupon bears to be more persuasive than the Groupon bulls. That said, there’s a Groupon-optimism argument I want to share at length, by Steve Cheney, because it outlines some possibilities for the continued evolution of analytics. Read more
| Categories: Analytic technologies, Specific users | 1 Comment |
Infobright 4.0
Infobright is announcing its 4.0 release, with imminent availability. In marketing and product alike, Infobright is betting the farm on machine-generated data. This hasn’t been Infobright’s strategy from the getgo, but it is these days, with pretty good focus and commitment. While some fraction of Infobright’s customer base is in the Sybase-IQ-like data mart market — and indeed Infobright put out a customer-win press release in that market a few days ago — Infobright’s current customer targets seem to be mainly:
- Web companies, many of which are already MySQL users.
- Telecommunication and similar log data, especially in OEM relationships.
- Trading/financial services, especially at mid-tier companies.
Key aspects of Infobright 4.0 include: Read more
| Categories: Data warehousing, Database compression, Infobright, Investment research and trading, Log analysis, Open source, Telecommunications, Web analytics | 8 Comments |
The essence of an application
Once upon a time, information technology was strictly about — well, information. And by “information” what was meant was “data”.* An application boiled down to a database design, plus a straightforward user interface, in whatever the best UI technology of the day happened to be. Things rarely worked quite as smoothly as the design-database/press-button/generate-UI propaganda would have one believe, but database design was clearly at the center of application invention.
*Not coincidentally, two of the oldest names for “IT” were data processing and management information systems.
Eventually, there came to be three views of the essence of IT:
- Data — i.e., the traditional view, still exemplified by IBM and Oracle.
- People empowerment — i.e., Microsoft-style emphasis on UI friendliness and efficiency.
- Operational workflow — i.e., SAP-style emphasis on actual business processes.
Graphical user interfaces were a major enabling technology for that evolution. Equally important, relational databases made some difficult problems easy(ier), freeing application designers to pursue more advanced functionality.
Based on further technical evolution, specifically in analytic and consumer technologies, I think we should now take that list up to five. The new members I propose are:
- Investigative analytics.
- Emotional response.
| Categories: Data warehousing, Facebook, Predictive modeling and advanced analytics, Theory and architecture, Web analytics | 1 Comment |
When it’s still best to use a relational DBMS
There are plenty of viable alternatives to relational database management systems. For short-request processing, both document stores and fully object-oriented DBMS can make sense. Text search engines have an important role to play. E. F. “Ted” Codd himself once suggested that relational DBMS weren’t best for analytics.* Analysis of machine-generated log data doesn’t always have a naturally relational aspect. And I could go on with more examples yet.
*Actually, he didn’t admit that what he was advocating was a different kind of DBMS, namely a MOLAP one — but he was. And he was wrong anyway about the necessity for MOLAP. But let’s overlook those details. 🙂
Nonetheless, relational DBMS dominate the market. As I see it, the reasons for relational dominance cluster into four areas (which of course overlap):
- Data re-use. Ted Codd’s famed original paper referred to shared data banks for a reason.
- The benefits of normalization, which include:
- You only have to do programming work of writing something once …
- … and you don’t have to do the programming work of keeping multiple versions of the information consistent.
- You only have to do processing work of writing something once.
- You only have to buy storage to hold each fact once.
- Separation of concerns.
- Different people can worry about programming and “database stuff.”
- Indeed, even performance optimization can sometimes be separated from programming (i.e., when all you have to do to get speed is implement the correct indexes).
- Maturity and momentum, as reflected in the availability of:
- People.
- A broad variety of mature relational DBMS.
- Vast amounts of packaged software that “talks” SQL.
Generally speaking, I find the reasons for sticking with relational technology compelling in cases such as: Read more
