Data types

Analysis of data management technology optimized for specific datatypes, such as text, geospatial, object, RDF, or XML. Related subjects include:

December 18, 2016

Introduction to and CrateDB and CrateDB basics include:

In essence, CrateDB is an open source and less mature alternative to MemSQL. The opportunity for MemSQL and CrateDB alike exists in part because analytic RDBMS vendors didn’t close it off.

CrateDB’s not-just-relational story starts:

Read more

November 23, 2016

MongoDB 3.4 and “multimodel” query

“Multimodel” database management is a hot new concept these days, notwithstanding that it’s been around since at least the 1990s. My clients at MongoDB of course had to join the train as well, but they’ve taken a clear and interesting stance:

When I pointed out that it would make sense to call this “multimodel query” — because the storage isn’t “multimodel” at all — they quickly agreed.

To be clear: While there are multiple ways to read data in MongoDB, there’s still only one way to write it. Letting that sink in helps clear up confusion as to what about MongoDB is or isn’t “multimodel”. To spell that out a bit further: Read more

October 21, 2016

Rapid analytics

“Real-time” technology excites people, and has for decades. Yet the actual, useful technology to meet “real-time” requirements remains immature, especially in cases which call for rapid human decision-making. Here are some notes on that conundrum.

1. I recently posted that “real-time” is getting real. But there are multiple technology challenges involved, including:

2. In early 2011, I coined the phrase investigative analytics, about which I said three main things: Read more

October 3, 2016

Notes on the transition to the cloud

1. The cloud is super-hot. Duh. And so, like any hot buzzword, “cloud” means different things to different marketers. Four of the biggest things that have been called “cloud” are:

Further, there’s always the idea of hybrid cloud, in which a vendor peddles private cloud systems (usually appliances) running similar technology stacks to what they run in their proprietary public clouds. A number of vendors have backed away from such stories, but a few are still pushing it, including Oracle and Microsoft.

This is a good example of Monash’s Laws of Commercial Semantics.

2. Due to economies of scale, only a few companies should operate their own data centers, aka true on-prem(ises). The rest should use some combination of colo, SaaS, and public cloud.

This fact now seems to be widely understood.

Read more

May 30, 2016

Adversarial analytics and other topics

Five years ago, in a taxonomy of analytic business benefits, I wrote:

A large fraction of all analytic efforts ultimately serve one or more of three purposes:

  • Marketing
  • Problem and anomaly detection and diagnosis
  • Planning and optimization

That continues to be true today. Now let’s add a bit of spin.

1. A large fraction of analytics is adversarial. In particular: Read more

December 10, 2015

Readings in Database Systems

Mike Stonebraker and Larry Ellison have numerous things in common. If nothing else:

I mention the latter because there’s a new edition of Readings in Database Systems, aka the Red Book, available online, courtesy of Mike, Joe Hellerstein and Peter Bailis. Besides the recommended-reading academic papers themselves, there are 12 survey articles by the editors, and an occasional response where, for example, editors disagree. Whether or not one chooses to tackle the papers themselves — and I in fact have not dived into them — the commentary is of great interest.

But I would not take every word as the gospel truth, especially when academics describe what they see as commercial market realities. In particular, as per my quip in the first paragraph, the data warehouse market has not yet gone to the extremes that Mike suggests,* if indeed it ever will. And while Joe is close to correct when he says that the company Essbase was acquired by Oracle, what actually happened is that Arbor Software, which made Essbase, merged with Hyperion Software, and the latter was eventually indeed bought by the giant of Redwood Shores.**

*When it comes to data warehouse market assessment, Mike seems to often be ahead of the trend.

**Let me interrupt my tweaking of very smart people to confess that my own commentary on the Oracle/Hyperion deal was not, in retrospect, especially prescient.

Mike pretty much opened the discussion with a blistering attack against hierarchical data models such as JSON or XML. To a first approximation, his views might be summarized as:  Read more

December 1, 2015

What is AI, and who has it?

This is part of a four post series spanning two blogs.

1. “Artificial intelligence” is a term that usually means one or more of:

But that covers a lot of ground, especially since reasonable people might disagree as to what constitutes “smart”.

2. Examples of what has been called “AI” include:

Read more

October 26, 2015

Sources of differentiation

Obviously, a large fraction of what I write about involves technical differentiation. So let’s try for a framework where differentiation claims can be placed in context. This post will get through the generalities. The sequels will apply them to specific cases.

Many buying and design considerations for IT fall into six interrelated areas:  Read more

October 15, 2015

Couchbase 4.0 and related subjects

I last wrote about Couchbase in November, 2012, around the time of Couchbase 2.0. One of the many new features I mentioned then was secondary indexing. Ravi Mayuram just checked in to tell me about Couchbase 4.0. One of the important new features he mentioned was what I think he said was Couchbase’s “first version” of secondary indexing. Obviously, I’m confused.

Now that you’re duly warned, let me remind you of aspects of Couchbase timeline.

Technical notes on Couchbase 4.0 — and related riffs :) — start: Read more

September 14, 2015

DataStax and Cassandra update

MongoDB isn’t the only company I reached out to recently for an update. Another is DataStax. I chatted mainly with Patrick McFadin, somebody with whom I’ve had strong consulting relationships at a user and vendor both. But Rachel Pedreschi contributed the marvelous phrase “twinkling dashboard”.

It seems fair to say that in most cases:

Those generalities, in my opinion, make good technical sense. Even so, there are some edge cases or counterexamples, such as:

*And so a gas company is doing lightweight analysis on boiler temperatures, which it regards as hot data. :)

While most of the specifics are different, I’d say similar things about MongoDB, Cassandra, or any other NoSQL DBMS that comes to mind: Read more

Next Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:


Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.