MOLAP

Analysis of MOLAP (Multidimensional OnLine Analytic Processing) products and vendors. Related subjects include:

August 14, 2013

The two sides of BI

As is the case for most important categories of technology, discussions of BI can get confused. I’ve remarked in the past that there are numerous kinds of BI, and that the very origin of the term “business intelligence” can’t even be pinned down to the nearest century. But the most fundamental confusion of all is that business intelligence technology really is two different things, which in simplest terms may be categorized as user interface (UI) and platform* technology. And so:

*I wanted to say “server” or “server-side” instead of “platform”, as I dislike the latter word. But it’s too inaccurate, for example in the case of the original Cognos PowerPlay, and also in various thin-client scenarios.

Key aspects of BI platform technology can include:

Read more

February 13, 2013

It’s hard to make data easy to analyze

It’s hard to make data easy to analyze. While everybody seems to realize this — a few marketeers perhaps aside — some remarks might be useful even so.

Many different technologies purport to make data easy, or easier, to an analyze; so many, in fact, that cataloguing them all is forbiddingly hard. Major claims, and some technologies that make them, include:

*Complex event/stream processing terminology is always problematic.

My thoughts on all this start:  Read more

November 5, 2012

Do you need an analytic RDBMS?

I can think of seven major reasons not to use an analytic RDBMS. One is good; but the other six seem pretty questionable, niche circumstances excepted, especially at this time.

The good reason to not have an analytic RDBMS is that most organizations can run perfectly well on some combination of:

Those enterprises, however, are generally not who I write for or about.

The six bad reasons to not have an analytic RDBMS all take the form “Can’t some other technology do the job better?”, namely:

Read more

July 31, 2011

The Ted Codd guarantee

I write a lot about whether or not to use relational DBMS. For example:

Before going further in that vein, I’d like to do a quick review of what E. F. “Ted” Codd was getting at with the relational model in the first place.  Read more

July 5, 2011

Eight kinds of analytic database (Part 2)

In Part 1 of this two-part series, I outlined four variants on the traditional enterprise data warehouse/data mart dichotomy, and suggested what kinds of DBMS products you might use for each. In Part 2 I’ll cover four more kinds of analytic database — even newer, for the most part, with a use case/product short list match that is even less clear.  Read more

July 5, 2011

Eight kinds of analytic database (Part 1)

Analytic data management technology has blossomed, leading to many questions along the lines of “So which products should I use for which category of problem?” The old EDW/data mart dichotomy is hopelessly outdated for that purpose, and adding a third category for “big data” is little help.

Let’s try eight categories instead. While no categorization is ever perfect, these each have at least some degree of technical homogeneity. Figuring out which types of analytic database you have or need — and in most cases you’ll need several — is a great early step in your analytic technology planning.  Read more

May 29, 2011

When it’s still best to use a relational DBMS

There are plenty of viable alternatives to relational database management systems. For short-request processing, both document stores and fully object-oriented DBMS can make sense. Text search engines have an important role to play. E. F. “Ted” Codd himself once suggested that relational DBMS weren’t best for analytics.* Analysis of machine-generated log data doesn’t always have a naturally relational aspect. And I could go on with more examples yet.

*Actually, he didn’t admit that what he was advocating was a different kind of DBMS, namely a MOLAP one — but he was. And he was wrong anyway about the necessity for MOLAP. But let’s overlook those details. :)

Nonetheless, relational DBMS dominate the market. As I see it, the reasons for relational dominance cluster into four areas (which of course overlap):

Generally speaking, I find the reasons for sticking with relational technology compelling in cases such as:  Read more

December 28, 2010

Evolving definitions and technology categories for 2011

It seems my prediction of a limited blogging schedule in December came emphatically true. I shall re-start with a collection of quick thoughts, clearing the decks for more detailed posts to follow. Read more

December 11, 2009

Ray Wang on SAP

Ray Wang made a terrific post based on SAP’s annual influencer love-in, an event which I no longer attend. Ray believes SAP has been in a “crisis”, and sums up his views as

The Bottom Line  – SAP’s Turning The Corner

Credit must be given to SAP for charting a new course.  A shift in the management philosophy and product direction will take years to realize, however, its not too late for change.  SAP must remember its roots and become more German and less American.  The renewed focus must put customer requests and priorities ahead of SAP’s bureaucracy.  The emphasis must focus on the relationship.  When that reemerges in how SAP works with customers, partners, influencers, and its own employees, SAP will be back in good graces. In the meantime, its  time to get to work and deliver.  Oracle’s Fusions Apps are coming soon and competitors such as IBM, Microsoft, Epicor, IFS, and SalesForce.com will not relent.

I recall the 1980s, when SAP’s main differentiator, at least in the English-speaking US, was a total commitment to customer success, and when it could be taken for granted that SAP would do business ethically. Things change, and not always for the better.

Anyhow, the reason I’m highlighting Ray’s post is that he makes reference to a number of interesting SAP-cetric technology trends or initiatives. Read more

October 30, 2009

A question on MDX performance

An enterprise user wrote in with a question that boils down to:

What are reasonable MDX performance expectations?

MDX doesn’t come up in my life very much, and I don’t have much intuition about it. E.g., I don’t know whether one can slap an MDX-to-SQL converter on top of a fast analytic RDBMS and go to town. What’s more, I’m heading off on vacation and don’t feel like researching the matter myself in the immediate future. :)

So here’s the long form of the question. Any thoughts?

I have a general question on assessing the performance of an OLAP technology using a set of MDX queries. I would be interested to know if there are any benchmark MDX performance tests/results comparing different OLAP technologies (which may be based on different underlying DBMS’s if appropriate) on similar hardware setup, or even comparisons of complete appliance solutions. More generally, I want to determine what performance limits I could reasonably expect on what I think are fairly standard servers.

In my own work, I have set up a star schema model centered on a Fact table of 100 million rows (approx 60 columns), with dimensions ranging in cardinality from 5 to 10,000. In ad hoc analytics, is it expected that any query against such a dataset should return a result within a minute or two (i.e. before a user gets impatient), regardless of whether that query returns 100 cells or 50,000 cells (without relying on any aggregate table or caching mechanism)? Or is that level of performance only expected with a high end massively parallel software/hardware solution? The server specs I’m testing with are: 32-bit 4 core, 4GB RAM, 7.2k RPM SATA drive, running Windows Server 2003; 64-bit 8 core, 32GB RAM, 3 Gb/s SAS drive, running Windows Server 2003 (x64).

I realise that caching of query results and pre-aggregation mechanisms can significantly improve performance, but I’m coming from the viewpoint that in purely exploratory analytics, it is not possible to have all combinations of dimensions calculated in advance, in addition to being maintained.

Next Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.