Software as a Service (SaaS)

Analysis of software-as-a-service offerings with a database or analytic focus, or data connectivity tools focused on SaaS. Related subjects include:

November 24, 2013

Thoughts on SaaS

Generalizing about SaaS (Software as a Service) is hard. To prune some of the confusion, let’s start by noting:

For smaller enterprises, the core outsourcing argument is compelling. How small? Well:

So except for special cases, an enterprise with less than $100 million or so in revenue may have trouble affording on-site data processing, at least at a mission-critical level of robustness. It may well be better to use NetSuite or something like that, assuming needed features are available in SaaS form.*

Read more

November 10, 2013

RDBMS and their bundle-mates

Relational DBMS used to be fairly straightforward product suites, which boiled down to:

Now, however, most RDBMS are sold as part of something bigger.

Read more

October 30, 2013

Glassbeam instantiates a lot of trends

Glassbeam checked in recently, and they turn out to exemplify quite a few of the themes I’ve been writing about. For starters:

Glassbeam basics include:

All Glassbeam customers except one are SaaS/cloud (Software as a Service), and even that one was only offered a subscription (as oppose to perpetual license) price.

So what does Glassbeam’s technology do? Glassbeam says it is focused on “machine data analytics,” specifically for the “Internet of Things”, which it distinguishes from IT logs.* Specifically, Glassbeam sells to manufacturers of complex devices — IT (most of its sales so far ), medical, automotive (aspirational to date), etc. — and helps them analyze “phone home” data, for both support/customer service and marketing kinds of use cases. As of a recent release, the Glassbeam stack can: Read more

September 29, 2013

ClearStory, Spark, and Storm

ClearStory Data is:

I think I can do an interesting post about ClearStory while tap-dancing around the still-secret stuff, so let’s dive in.

ClearStory:

To a first approximation, ClearStory ingests data in a system built on Storm (code name: Stormy), dumps it into HDFS, and then operates on it in a system built on Spark (code name: Sparky). Along the way there’s a lot of interaction with another big part of the system, a metadata catalog with no code name I know of. Or as I keep it straight:

Read more

August 24, 2013

Hortonworks business notes

Hortonworks did a business-oriented round of outreach, talking with at least Derrick Harris and me. Notes  from my call — for which Rob Bearden* didn’t bother showing up — include, in no particular order:

*Speaking of CEO Bearden, an interesting note from Derrick’s piece is that Bearden is quoted as saying “I started this company from day one …”, notwithstanding that the now-departed Eric Baldeschwieler was founding CEO.

In Hortonworks’ view, Hadoop adopters typically start with a specific use case around a new type of data, such as clickstream, sensor, server log, geolocation, or social.  Read more

August 12, 2013

Things I keep needing to say

Some subjects just keep coming up. And so I keep saying things like:

Most generalizations about “Big Data” are false. “Big Data” is a horrific catch-all term, with many different meanings.

Most generalizations about Hadoop are false. Reasons include:

Hadoop won’t soon replace relational data warehouses, if indeed it ever does. SQL-on-Hadoop is still very immature. And you can’t replace data warehouses unless you have the power of SQL.

Note: SQL isn’t the only way to provide “the power of SQL”, but alternative approaches are just as immature.

Most generalizations about NoSQL are false. Different NoSQL products are … different. It’s not even accurate to say that all NoSQL systems lack SQL interfaces. (For example, SQL-on-Hadoop often includes SQL-on-HBase.)

Read more

August 4, 2013

Data model churn

Perhaps we should remind ourselves of the many ways data models can be caused to churn. Here are some examples that are top-of-mind for me. They do overlap a lot — and the whole discussion overlaps with my post about schema complexity last January, and more generally with what I’ve written about dynamic schemas for the past several years..

Just to confuse things further — some of these examples show the importance of RDBMS, while others highlight the relational model’s limitations.

The old standbys

Product and service changes. Simple changes to your product line many not require any changes to the databases recording their production and sale. More complex product changes, however, probably will.

A big help in MCI’s rise in the 1980s was its new Friends and Family service offering. AT&T couldn’t respond quickly, because it couldn’t get the programming done, where by “programming” I mainly mean database integration and design. If all that was before your time, this link seems like a fairly contemporaneous case study.

Organizational changes. A common source of hassle, especially around databases that support business intelligence or planning/budgeting, is organizational change. Kalido’s whole business was based on accommodating that, last I checked, as were a lot of BI consultants’. Read more

July 20, 2013

The refactoring of everything

I’ll start with three observations:

As written, that’s probably pretty obvious. Even so, it’s easy to forget just how pervasive the refactoring is and is likely to be. Let’s survey some examples first, and then speculate about consequences. Read more

May 20, 2013

Some stuff I’m working on

1. I have some posts up on Strategic Messaging. The most recent are overviews of messaging, pricing, and positioning.

2. Numerous vendors are blending SQL and JSON management in their short-request DBMS. It will take some more work for me to have a strong opinion about the merits/demerits of various alternatives.

The default implementation — one example would be Clustrix’s — is to stick the JSON into something like a BLOB/CLOB field (Binary/Character Large Object), index on individual values, and treat those indexes just like any others for the purpose of SQL statements. Drawbacks include:

IBM DB2 is one recent arrival to the JSON party. Unfortunately, I forgot to ask whether IBM’s JSON implementation was based on IBM DB2 pureXML when I had the chance, and IBM hasn’t gotten around to answering my followup query.

3. Nor has IBM gotten around to answering my followup queries on the subject of BLU, an interesting-sounding columnar option for DB2.

4. Numerous clients have asked me whether they should be active in DBaaS (DataBase as a Service). After all, Amazon, Google, Microsoft, Rackspace and salesforce.com are all in that business in some form, and other big companies have dipped toes in as well. Read more

April 14, 2013

Introduction to Deep Information Sciences and DeepDB

I talked Friday with Deep Information Sciences, makers of DeepDB. Much like TokuDB — albeit with different technical strategies — DeepDB is a single-server DBMS in the form of a MySQL engine, whose technology is concentrated around writing indexes quickly. That said:

*For reasons that do not seem closely related to product reality, DeepDB is marketed as if it supports “unstructured” data today.

Other NewSQL DBMS seem “designed for big data and the cloud” to at least the same extent DeepDB is. However, if we’re interpreting “big data” to include multi-structured data support — well, only half or so of the NewSQL products and companies I know of share Deep’s interest in branching out. In particular:

Edit: MySQL has some sort of an optional NoSQL interface, and hence so presumably do MySQL-compatible TokuDB, GenieDB, Clustrix, and MemSQL.

Also, some of those products do not today have the transparent scale-out that Deep plans to offer in the future.

Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.