Business intelligence

Analysis of companies, products, and user strategies in the area of business intelligence. Related subjects include:

October 10, 2013

Aster 6, graph analytics, and BSP

Teradata Aster 6 has been preannounced (beta in Q4, general release in Q1 2014). The general architectural idea is:

There’s much more, of course, but those are the essential pieces.

Just to be clear: Teradata Aster 6, aka the Teradata Aster Discovery Platform, includes HDFS compatibility, native MapReduce and ways of invoking Hadoop MapReduce on non-Aster nodes or clusters — but even so, you can’t run Hadoop MapReduce within Aster over Aster’s version of HDFS.

The most dramatic immediate additions are in the graph analytics area.* The new SQL-Graph is supported by something called BSP (Bulk Synchronous Parallel). I’ll start by observing (and some of this is confusing):

Use cases suggested are a lot of marketing, plus anti-fraud.

*Pay no attention to Aster’s previous claims to do a good job on graph — and not only via nPath — in SQL-MR.

So far as I can infer from examples I’ve seen, the semantics of Teradata Aster SQL-Graph start:

Within those functions, the core idea is:  Read more

October 6, 2013

What matters in investigative analytics?

In a general pontification on positioning, I wrote:

every product in a category is positioned along the same set of attributes,

and went on to suggest that summary attributes were more important than picky detailed ones. So how does that play out for investigative analytics?

First, summary attributes that matter for almost any kind of enterprise software include:

*I picked up that phrase when — abbreviated as RAS — it was used to characterize the emphasis for Oracle 8. I like it better than a general and ambiguous concept of “enterprise-ready”.

The reason I’m writing this post, however, is to call out two summary attributes of special importance in investigative analytics — which regrettably which often conflict with each other — namely:

Much of what I work on boils down to those two subjects. For example: Read more

September 29, 2013

Visualization or navigation?

I’ve suggested in the past, approximately, that the platform technology side of business intelligence is more significant than the user interface. That formulation, however, doesn’t exactly capture what I believe. To be more precise, let’s differentiate between a couple aspects of business intelligence UI.

It might seem that a lot of the action in business intelligence revolves around ever-better visualization. After all, Tableau is clearly identified as a visualization-centric technology; who’s hotter than Tableau? And numerous other vendors talk of “visualizations” too. But I don’t think that’s exactly right — rather, I see navigation as being a much bigger deal. And unlike most pure visualization, navigation usually depends strongly on underlying platform capabilities.

Examples of what I mean by innovative navigation — all of which have been developed or have gained prominence over the past decade or so — include:

Read more

August 14, 2013

The two sides of BI

As is the case for most important categories of technology, discussions of BI can get confused. I’ve remarked in the past that there are numerous kinds of BI, and that the very origin of the term “business intelligence” can’t even be pinned down to the nearest century. But the most fundamental confusion of all is that business intelligence technology really is two different things, which in simplest terms may be categorized as user interface (UI) and platform* technology. And so:

*I wanted to say “server” or “server-side” instead of “platform”, as I dislike the latter word. But it’s too inaccurate, for example in the case of the original Cognos PowerPlay, and also in various thin-client scenarios.

Key aspects of BI platform technology can include:

Read more

August 12, 2013

Things I keep needing to say

Some subjects just keep coming up. And so I keep saying things like:

Most generalizations about “Big Data” are false. “Big Data” is a horrific catch-all term, with many different meanings.

Most generalizations about Hadoop are false. Reasons include:

Hadoop won’t soon replace relational data warehouses, if indeed it ever does. SQL-on-Hadoop is still very immature. And you can’t replace data warehouses unless you have the power of SQL.

Note: SQL isn’t the only way to provide “the power of SQL”, but alternative approaches are just as immature.

Most generalizations about NoSQL are false. Different NoSQL products are … different. It’s not even accurate to say that all NoSQL systems lack SQL interfaces. (For example, SQL-on-Hadoop often includes SQL-on-HBase.)

Read more

August 8, 2013

Curt Monash on video

I made a remarkably rumpled video appearance yesterday with SiliconAngle honchos John Furrier and Dave Vellante. (Excuses include <3 hours sleep, and then a scrambling reaction to a schedule change.) Topics covered included, with approximate timechecks:

Edit: Some of my remarks were transcribed.

Related links

July 31, 2013

“Disruption” in the software industry

I lampoon the word “disruptive” for being badly overused. On the other hand, I often refer to the concept myself. Perhaps I should clarify. :)

You probably know that the modern concept of disruption comes from Clayton Christensen, specifically in The Innovator’s Dilemma and its sequel, The Innovator’s Solution. The basic ideas are:

In response (this is the Innovator’s Solution part):

But not all cleverness is “disruption”.

Here are some of the examples that make me think of the whole subject. Read more

July 20, 2013

The refactoring of everything

I’ll start with three observations:

As written, that’s probably pretty obvious. Even so, it’s easy to forget just how pervasive the refactoring is and is likely to be. Let’s survey some examples first, and then speculate about consequences. Read more

April 25, 2013

Analytic application themes

I talk with a lot of companies, and repeatedly hear some of the same application themes. This post is my attempt to collect some of those ideas in one place.

1. So far, the buzzword of the year is “real-time analytics”, generally with “operational” or “big data” included as well. I hear variants of that positioning from NewSQL vendors (e.g. MemSQL), NoSQL vendors (e.g. AeroSpike), BI stack vendors (e.g. Platfora), application-stack vendors (e.g. WibiData), log analysis vendors (led by Splunk), data management vendors (e.g. Cloudera), and of course the CEP industry.

Yeah, yeah, I know — not all the named companies are in exactly the right market category. But that’s hard to avoid.

Why this gold rush? On the demand side, there’s a real or imagined need for speed. On the supply side, I’d say:

2. More generally, most of the applications I hear about are analytic, or have a strong analytic aspect. The three biggest areas — and these overlap — are:

Also arising fairly frequently are:

I’m hearing less about quality, defect tracking, and equipment maintenance than I used to, but those application areas have anyway been ebbing and flowing for decades.

Read more

March 26, 2013

Platfora at the time of first GA

Well-resourced Silicon Valley start-ups typically announce their existence multiple times. Company formation, angel funding, Series A funding, Series B funding, company launch, product beta, and product general availability may not be 7 different “news events”, but they’re apt to be at least 3-4. Platfora, no exception to this rule, is hitting general availability today, and in connection with that I learned a bit more about what they are up to.

In simplest terms, Platfora offers exploratory business intelligence against Hadoop-based data. As per last weekend’s post about exploratory BI, a key requirement is speed; and so far as I can tell, any technological innovation Platfora offers relates to the need for speed. Specifically, I drilled into Platfora’s performance architecture on the query processing side (and associated data movement); Platfora also brags of rendering 100s of 1000s of “marks” quickly in HTML5 visualizations, but I haven’t a clue as to whether that’s much of an accomplishment in itself.

Platfora’s marketing suggests it obviates the need for a data warehouse at all; for most enterprises, of course, that is a great exaggeration. But another dubious aspect of Platfora marketing actually serves to understate the product’s merits — Platfora claims to have an “in-memory” product, when what’s really the case is that Platfora’s memory-centric technology uses both RAM and disk to manage larger data marts than could reasonably be fit into RAM alone. Expanding on what I wrote about Platfora when it de-stealthedRead more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:


Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.