Predictive modeling and advanced analytics

Discussion of technologies and vendors in the overlapping areas of predictive analytics, predictive modeling, data mining, machine learning, Monte Carlo analysis, and other “advanced” analytics.

April 30, 2014

Spark on fire

Spark is on the rise, to an even greater degree than I thought last month.

*Yes, my fingerprints are showing again.

The most official description of what Spark now contains is probably the “Spark ecosystem” diagram from Databricks. However, at the time of this writing it is slightly out of date, as per some email from Databricks CEO Ion Stoica (quoted with permission):

… but if I were to redraw it, SparkSQL will replace Shark, and Shark will eventually become a thin layer above SparkSQL and below BlinkDB.

With this change, all the modules on top of Spark (i.e., SparkStreaming, SparkSQL, GraphX, and MLlib) are part of the Spark distribution. You can think of these modules as libraries that come with Spark.

Read more

March 17, 2014

Notes and comments, March 17, 2014

I have ever more business-advice posts up on Strategic Messaging. Recent subjects include pricing and stealth-mode marketing. Other stuff I’ve been up to includes:

The Spark buzz keeps increasing; almost everybody I talk with expects Spark to win big, probably across several use cases.

Disclosure: I’ll soon be in a substantial client relationship with Databricks, hoping to improve their stealth-mode marketing. :D

The “real-time analytics” gold rush I called out last year continues. A large fraction of the vendors I talk with have some variant of “real-time analytics” as a central message.

Basho had a major change in leadership. A Twitter exchange ensued. :) Joab Jackson offered a more sober — figuratively and literally — take.

Hadapt laid off its sales and marketing folks, and perhaps some engineers as well. In a nutshell, Hadapt’s approach to SQL-on-Hadoop wasn’t selling vs. the many alternatives, and Hadapt is doubling down on poly-structured data*/schema-on-need.

*While Hadapt doesn’t to my knowledge use the term “poly-structured data”, some other vendors do. And so I may start using it more myself, at least when the poly-structured/multi-structured distinction actually seems significant.

WibiData is partnering with DataStax, WibiData is of course pleased to get access to Cassandra’s user base, which gave me the opportunity to ask why they thought Cassandra had beaten HBase in those accounts. The answer was performance and availability, while Cassandra’s traditional lead in geo-distribution wasn’t mentioned at all.

Disclosure: My fingerprints are all over that deal.

In other news, WibiData has had some executive departures as well, but seems to be staying the course on its strategy. I continue to think that WibiData has a really interesting vision about how to do large-data-volume interactive computing, and anybody in that space would do well to talk with them or at least look into the open source projects WibiData sponsors.

I encountered another apparently-popular machine-learning term — bandit model. It seems to be glorified A/B testing, and it seems to be popular. I think the point is that it tries to optimize for just how much you invest in testing unproven (for good or bad) alternatives.

I had an awkward set of interactions with Gooddata, including my longest conversations with them since 2009. Gooddata is in the early days of trying to offer an all-things-to-all-people analytic stack via SaaS (Software as a Service). I gather that Hadoop, Vertica, PostgreSQL (a cheaper Vertica alternative), Spark, Shark (as a faster version of Hive) and Cassandra (under the covers) are all in the mix — but please don’t hold me to those details.

I continue to think that computing is moving to a combination of appliances, clusters, and clouds. That said, I recently bought a new gaming-class computer, and spent many hours gaming on it just yesterday.* I.e., there’s room for general-purpose workstations as well. But otherwise, I’m not hearing anything that contradicts my core point.

*The last beta weekend for The Elder Scrolls Online; I loved Morrowind.

February 2, 2014

Some stuff I’m thinking about (early 2014)

From time to time I like to do “what I’m working on” posts. From my recent blogging, you probably already know that includes:

Other stuff on my mind includes but is not limited to:

1. Certain categories of buying organizations are inherently leading-edge.

Fine. But what really intrigues me is when more ordinary enterprises also put leading-edge technologies into production. I pester everybody for examples of that.

Read more

February 2, 2014

Spark and Databricks

I’ve heard a lot of buzz recently around Spark. So I caught up with Ion Stoica and Mike Franklin for a call. Let me start by acknowledging some sources of confusion.

The “What is Spark?” question may soon be just as difficult as the ever-popular “What is Hadoop?” That said — and referring back to my original technical post about Spark and also to a discussion of prominent Spark user ClearStory — my try at “What is Spark?” goes something like this:

Read more

December 5, 2013

Vertica 7

It took me a bit of time, and an extra call with Vertica’s long-time R&D chief Shilpa Lawande, but I think I have a decent handle now on Vertica 7, code-named Crane. The two aspects of Vertica 7 I find most interesting are:

Other Vertica 7 enhancements include:

Overall, two recurring themes in our discussion were:

Read more

November 19, 2013

How Revolution Analytics parallelizes R

I talked tonight with Lee Edlefsen, Chief Scientist of Revolution Analytics, and now think I understand Revolution’s parallel R much better than I did before.

There are four primary ways that people try to parallelize predictive modeling:

One confusing aspect of this discussion is that it could reference several heavily-overlapping but not identical categories of algorithms, including:

  1. External memory algorithms, which operates on datasets too big to fit in main memory, by — for starters — reading in and working on a part of the data at a time. Lee observes that these are almost always parallelizable.
  2. What Revolution markets as External Memory Algorithms, which are those external memory algorithms it has gotten around to implementing so far. These are all parallelized. They are also all in the category of …
  3. … algorithms that can be parallelized by:
    • Operating on data in parts.
    • Getting intermediate results.
    • Combining them in some way for a final result.
  4. Algorithms of the previous category, where the way of combining them specifically is in the form of summation, such as those discussed in the famous paper Map-Reduce for Machine Learning on Multicore. Not all of Revolution’s current parallel algorithms fall into this group.

To be clear, all Revolution’s parallel algorithms are in Category #2 by definition and Category #3 in practice. However, they aren’t all in Category #4.

Read more

November 11, 2013

Cautionary tales

Before the advent of cheap computing power, statistics was a rather dismal subject. David Lax scared me off from studying much of it by saying that 90% of statistics was done on sets of measure 0.

The following cautionary tale also dates to that era. Other light verse below.  Read more

November 10, 2013

RDBMS and their bundle-mates

Relational DBMS used to be fairly straightforward product suites, which boiled down to:

Now, however, most RDBMS are sold as part of something bigger.

Read more

October 18, 2013

Entity-centric event series analytics

Much of modern analytic technology deals with what might be called an entity-centric sequence of events. For example:

Analytic questions are asked along the lines “Which sequences of events are most productive in terms of leading to the events we really desire?”, such as product sales. Another major area is sessionization, along with data preparation tasks that boil down to arranging data into meaningful event sequences in the first place.

A number of my clients are focused on such scenarios, including WibiData, Teradata Aster (e.g. via nPath), Platfora (in the imminent Platfora 3), and others. And so I get involved in naming exercises. The term entity-centric came along a while ago, because “user-centric” is too limiting. (E.g., the data may not be about a person, but rather specifically about the actions taken on her mobile device.) Now I’m adding the term event series to cover the whole scenario, rather than the “event sequence(s)” I might appear to have been hinting at above.

I decided on “event series” earlier this week, after noting that:  Read more

October 10, 2013

Aster 6, graph analytics, and BSP

Teradata Aster 6 has been preannounced (beta in Q4, general release in Q1 2014). The general architectural idea is:

There’s much more, of course, but those are the essential pieces.

Just to be clear: Teradata Aster 6, aka the Teradata Aster Discovery Platform, includes HDFS compatibility, native MapReduce and ways of invoking Hadoop MapReduce on non-Aster nodes or clusters — but even so, you can’t run Hadoop MapReduce within Aster over Aster’s version of HDFS.

The most dramatic immediate additions are in the graph analytics area.* The new SQL-Graph is supported by something called BSP (Bulk Synchronous Parallel). I’ll start by observing (and some of this is confusing):

Use cases suggested are a lot of marketing, plus anti-fraud.

*Pay no attention to Aster’s previous claims to do a good job on graph — and not only via nPath — in SQL-MR.

So far as I can infer from examples I’ve seen, the semantics of Teradata Aster SQL-Graph start:

Within those functions, the core idea is:  Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.