Parallelization

Analysis of issues in parallel computing, especially parallelized database management. Related subjects include:

October 1, 2009

MapReduce tidbits

I’ve never had children, and so have never had to supervise squabbling siblings, each accusing the other of selfishness and insufficient sharing. Perhaps the MapReduce vendors are a form of karmic payback. Be that as it may, my client Cloudera has organized Hadoop World on October 2 in New York, and my other client Aster Data is hosting a MapReduce-centric Big Data Summit the night before, at the same venue. Even if you don’t go, both conference’s agenda pages offer a peek into what’s going on in MapReduce applications. I’m not going either, but even so I hope to post an overview of MapReduce uses after the conferences serve to publicize some of them.

Even better, I plan to hold a couple of webinars on MapReduce, the first at 10 am (blech) and 1 pm Eastern time on October 15. They’re sponsored by Aster Data, and so will have a strong SQL/MapReduce orientation.

In connection with its conference, Aster is introducing an nCluster-Hadoop connector — i.e., a loader from HDFS (Hadoop Distributed File System) implemented in SQL/MapReduce. In particular: Read more

October 1, 2009

Yahoo wants to do decapetabyte-scale data warehousing in Hadoop

My old client Mark Tsimelzon moved over to Yahoo after Coral8 was acquired, and I caught up with him last month. He turns out to be running development for a significant portion of Yahoo’s Hadoop effort — everything other than HDFS (Hadoop Distributed File System). Yahoo evidently plans to, within a year or so, get Hadoop to the point that it is managing 10s of petabytes of data for Yahoo, with reasonable data warehousing functionality.

Highlights of our visit included:

Read more

September 21, 2009

Notes on the Oracle Database 11g Release 2 white paper

The Oracle Database 11g Release 2 white paper I cited a couple of weeks ago has evidently been edited, given that a phrase I quoted last month is no longer to be found. Anyhow, here are some quotes from and comments on what evidently is the latest version. Read more

September 13, 2009

HadoopDB

Despite a thoughtful heads-up from Daniel Abadi at the time of his original posting about HadoopDB, I’m just getting around to writing about it now. HadoopDB is a research project carried out by a couple of Abadi’s students. Further research is definitely planned. But it seems too early to say that HadoopDB will ever get past the “research and oh by the way the code is open sourced” stage and become a real code line — whether commercialized, open source, or both.

The basic idea of HadoopDB is to put copies of a DBMS at different nodes of a grid, and use Hadoop to parcel work among them. Major benefits when compared with massively parallel DBMS are said to be:

HadoopDB has actually been built with PostgreSQL. That version achieved performance well below that of a commercial DBMS “DBX”, where X=2. Column-store guru Abadi has repeatedly signaled his intention to try out HadoopDB with VectorWise at the nodes instead. (Recall that VectorWise is shared-everything.) It will be interesting to see how that configuration performs.

The real opportunity for HadoopDB, however, in my opinion may lie elsewhere. Read more

September 13, 2009

Fault-tolerant queries

MapReduce/Hadoop fans sometimes raise the question of query fault-tolerance. That is — if a node fails, does the query need to be restarted, or can it keep going? For example, Daniel Abadi et al. trumpet query fault-tolerance as one of the virtues of HadoopDB. Some of the scientists at XLDB spoke of query fault-tolerance as being a good reason to leave 100s or 1000s of terabytes of data in Hadoop-managed file systems.

When we discussed this subject a few months ago in a couple of comment threads, it seemed to be the case that:

This raises an obvious (pair of) question(s) — why and/or when would anybody ever care about query fault-tolerance? Read more

September 11, 2009

Xkoto Gridscale highlights

I talked yesterday with cofounders Albert Lee and Ariff Kassam of Xkoto. Highlights included: Read more

September 3, 2009

Continuent on clustering

Robert Hodges, CTO of my client Continuent, put up a blog post laying out his and Continuent’s views on database clustering. Continuent offers Tungsten, its third try at database clustering technology, targeted at MySQL, PostgreSQL, and perhaps Oracle. Unlike Continuent’s more ambitious. second-generation product, Tungsten offers single-master replication, which in Robert’s view allows for great ease of deployment and administration (he likes the phrase “bone-simple”).

The downside to Continuent Tungsten ‘s stripped down architecture is that it doesn’t solve the most extreme performance scale-out problems. Instead, Continuent focuses on the other big benefits of keeping your data in more than one place, namely high availability and data loss prevention (i.e., backup).

Continuent has been around for a number of years, starting out in Finland but now being based in Silicon Valley. For most purposes, however, it’s reasonable to think of Continuent and Tungsten as start-up efforts.

As you might guess from the references to Finland and MySQL, Continuent’s products are open source, or at least have open source versions. I’m still a little fuzzy as to which features are open sourced and which are not. For that matter, I’m still unclear as to Tungsten’s feature list overall …

September 3, 2009

Teradata and Netezza are doing MapReduce too

Netezza told me a while ago that it planned to introduce MapReduce, and agreed yesterday this was no longer NDAed. Stephen Brobst of Teradata* let slip at XLDB that Teradata has MapReduce too, apparently implemented but not yet generally available.

I don’t have details in either case.  Netezza and Teradata evidently aren’t taking MapReduce as seriously as Aster Data, or even Greenplum or Vertica. But MapReduce has become pretty much of a “checkmark” item for large-database analytic DBMS vendors even so.

*Technically, Brobst is not and never has been a Teradata employee — but he’s widely and correctly regarded as being “of Teradata” even so. 🙂

August 4, 2009

Vertica’s version of MapReduce integration

I talked with Omer Trajman of Vertica Monday night about Vertica’s MapReduce integration, part of its Vertica 3.5 release. Highlights included:

Apparently, the use cases for Vertica/Hadoop integration to date lie in algorithmic trading and two kinds of web analytics. Specifically: Read more

August 2, 2009

Teradata 13 focuses on advanced analytic performance

Last October I wrote about the Teradata 13 release of Teradata’s database management software. Teradata 13, which will be used across the various Teradata product lines, has now been announced for GCA (General Customer Availability)*. So far as I can tell, there were two main points of emphasis for Teradata 13:

To put it even more concisely, the focus of Teradata 13 is on advanced analytic performance, although there of course are some enhancements in simple query performance and in analytic functionality as well. Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.