Analysis of data management technology optimized for text data. Related subjects include:

September 14, 2015

DataStax and Cassandra update

MongoDB isn’t the only company I reached out to recently for an update. Another is DataStax. I chatted mainly with Patrick McFadin, somebody with whom I’ve had strong consulting relationships at a user and vendor both. But Rachel Pedreschi contributed the marvelous phrase “twinkling dashboard”.

It seems fair to say that in most cases:

Those generalities, in my opinion, make good technical sense. Even so, there are some edge cases or counterexamples, such as:

*And so a gas company is doing lightweight analysis on boiler temperatures, which it regards as hot data. :)

While most of the specifics are different, I’d say similar things about MongoDB, Cassandra, or any other NoSQL DBMS that comes to mind: Read more

September 10, 2015

MongoDB update

One pleasure in talking with my clients at MongoDB is that few things are NDA. So let’s start with some numbers:

Also >530 staff, and I think that number is a little out of date.

MongoDB lacks many capabilities RDBMS users take for granted. MongoDB 3.2, which I gather is slated for early November, narrows that gap, but only by a little. Features include:

There’s also a closed-source database introspection tool coming, currently codenamed MongoDB Scout.  Read more

May 26, 2015

IT-centric notes on the future of health care

It’s difficult to project the rate of IT change in health care, because:

Timing aside, it is clear that health care change will be drastic. The IT part of that starts with vastly comprehensive electronic health records, which will be accessible (in part or whole as the case may be) by patients, care givers, care payers and researchers alike. I expect elements of such records to include:

These vastly greater amounts of data cited above will allow for greatly changed analytics.
Read more

May 2, 2015

Notes, links and comments, May 2, 2015

I’m going to be out-of-sorts this week, due to a colonoscopy. (Between the prep, the procedure, and the recovery, that’s a multi-day disablement.) In the interim, here’s a collection of links, quick comments and the like.

1. Are you an engineer considering a start-up? This post is for you. It’s based on my long experience in and around such scenarios, and includes a section on “Deadly yet common mistakes”.

2. There seems to be a lot of confusion regarding the business model at my clients Databricks. Indeed, my own understanding of Databricks’ on-premises business has changed recently. There are no changes in my beliefs that:

However, I now get the impression that revenue from such relationships is a bigger deal to Databricks than I previously thought.

Databricks, by the way, has grown to >50 people.

3. DJ Patil and Ruslan Belkin apparently had a great session on lessons learned, covering a lot of ground. Many of the points are worth reading, but one in particular echoed something I’m hearing lots of places — “Data is super messy, and data cleanup will always be literally 80% of the work.” Actually, I’d replace the “always” by something like “very often”, and even that mainly for newish warehouses, data marts or datasets. But directionally the comment makes a whole lot of sense.

Read more

April 16, 2015

Notes on indexes and index-like structures

Indexes are central to database management.

Perhaps it’s time for a round-up post on indexing. :)

1. First, let’s review some basics. Classically:

2. Further:  Read more

January 19, 2015

Where the innovation is

I hoped to write a reasonable overview of current- to medium-term future IT innovation. Yeah, right. :) But if we abandon any hope that this post could be comprehensive, I can at least say:

1. Back in 2011, I ranted against the term Big Data, but expressed more fondness for the V words — Volume, Velocity, Variety and Variability. That said, when it comes to data management and movement, solutions to the V problems have generally been sketched out.

2. Even so, there’s much room for innovation around data movement and management. I’d start with:

3. As I suggested last year, data transformation is an important area for innovation.  Read more

September 21, 2014

Data as an asset

We all tend to assume that data is a great and glorious asset. How solid is this assumption?

*”Our assets are our people, capital and reputation. If any of these is ever diminished, the last is the most difficult to restore.” I love that motto, even if Goldman Sachs itself eventually stopped living up to it. If nothing else, my own business depends primarily on my reputation and information.

This all raises the idea – if you think data is so valuable, maybe you should get more of it. Areas in which enterprises have made significant and/or successful investments in data acquisition include:  Read more

April 17, 2014

MongoDB is growing up

I caught up with my clients at MongoDB to discuss the recent MongoDB 2.6, along with some new statements of direction. The biggest takeaway is that the MongoDB product, along with the associated MMS (MongoDB Management Service), is growing up. Aspects include:

Read more

March 6, 2014

Splunk and inverted-list indexing

Some technical background about Splunk

In an October, 2009 technical introduction to Splunk, I wrote (emphasis added):

Splunk software both reads logs and indexes them. The same code runs both on the nodes that do the indexing and on machines that simply emit logs.

It turns out that the bolded part was changed several years ago. However, I don’t have further details, so let’s move on to Splunk’s DBMS-like aspects.

I also wrote:

The fundamental thing that Splunk looks at is an increment to a log – i.e., whatever has been added to the log since Splunk last looked at it.

That remains true. Confusingly, Splunk refers to these log increments as “rows”, even though they’re really structured and queried more like documents.

I further wrote:

Splunk has a simple ILM (Information Lifecycle management) story based on time. I didn’t probe for details.

Splunk’s ILM story turns out to be simple indeed.

Finally, I wrote:

I get the impression that most Splunk entity extraction is done at search time, not at indexing time. Splunk says that, if a <name, value> pair is clearly marked, its software does a good job of recognizing same. Beyond that, fields seem to be specified by users when they define searches.


I have trouble understanding how Splunk could provide flexible and robust reporting unless it tokenized and indexed specific fields more aggressively than I think it now does.

The point of what I in October, 2013 called

a high(er)-performance data store into which you can selectively copy columns of data

and which Splunk enthusiastically calls its “High Performance Analytic Store” is to meet that latter need.

Inverted-list indexing

Inverted list technology is confusing for several reasons, which start:  Read more

January 9, 2014

The games of Watson

IBM excels at game technology, most famously in Deep Blue (chess) and Watson (Jeopardy!). But except at the chip level — PowerPC — IBM hasn’t accomplished much at game/real world crossover. And so I suspect the Watson hype is far overblown.

I believe that for two main reasons. First, whenever IBM talks about big initiatives like Watson, it winds up bundling a bunch of dissimilar things together and claiming they’re a seamless whole. Second, some core Watson claims are eerily similar to artificial intelligence (AI) over-hype three or more decades past. For example, the leukemia treatment advisor that is being hopefully built in Watson now sounds a lot like MYCIN from the early 1970s, and the idea of collecting a lot of tidbits of information sounds a lot like the Cyc project. And by the way:

Read more

Next Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:


Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.