Memory-centric data management

Analysis of technologies that manage data entirely or primarily in random-access memory (RAM). Related subjects include:

October 15, 2015

Couchbase 4.0 and related subjects

I last wrote about Couchbase in November, 2012, around the time of Couchbase 2.0. One of the many new features I mentioned then was secondary indexing. Ravi Mayuram just checked in to tell me about Couchbase 4.0. One of the important new features he mentioned was what I think he said was Couchbase’s “first version” of secondary indexing. Obviously, I’m confused.

Now that you’re duly warned, let me remind you of aspects of Couchbase timeline.

Technical notes on Couchbase 4.0 — and related riffs :) — start: Read more

August 24, 2015

Multi-model database managers

I’d say:

Before supporting my claims directly, let me note that this is one of those posts that grew out of a Twitter conversation. The first round went:

Merv Adrian: 2 kinds of multimodel from DBMS vendors: multi-model DBMSs and multimodel portfolios. The latter create more complexity, not less.

Me: “Owned by the same vendor” does not imply “well integrated”. Indeed, not a single example is coming to mind.

Merv: We are clearly in violent agreement on that one.

Around the same time I suggested that Intersystems Cache’ was the last significant object-oriented DBMS, only to get the pushback that they were “multi-model” as well. That led to some reasonable-sounding justification — although the buzzwords of course aren’t from me — namely: Read more

August 3, 2015

Data messes

A lot of what I hear and talk about boils down to “data is a mess”. Below is a very partial list of examples.

To a first approximation, one would expect operational data to be rather clean. After all, it drives and/or records business transactions. So if something goes awry, the result can be lost money, disappointed customers, or worse, and those are outcomes to be strenuously avoided. Up to a point, that’s indeed true, at least at businesses large enough to be properly automated. (Unlike, for example — :) — mine.)

Even so, operational data has some canonical problems. First, it could be inaccurate; somebody can just misspell or otherwise botch an entry. Further, there are multiple ways data can be unreachable, typically because it’s:

Inconsistency can take multiple forms, including:  Read more

May 26, 2015

IT-centric notes on the future of health care

It’s difficult to project the rate of IT change in health care, because:

Timing aside, it is clear that health care change will be drastic. The IT part of that starts with vastly comprehensive electronic health records, which will be accessible (in part or whole as the case may be) by patients, care givers, care payers and researchers alike. I expect elements of such records to include:

These vastly greater amounts of data cited above will allow for greatly changed analytics.
Read more

March 23, 2015

A new logical data layer?

I’m skeptical of data federation. I’m skeptical of all-things-to-all-people claims about logical data layers, and in particular of Gartner’s years-premature “Logical Data Warehouse” buzzphrase. Still, a reasonable number of my clients are stealthily trying to do some kind of data layer middleware, as are other vendors more openly, and I don’t think they’re all crazy.

Here are some thoughts as to why, and also as to challenges that need to be overcome.

There are many things a logical data layer might be trying to facilitate — writing, querying, batch data integration, real-time data integration and more. That said:

Read more

March 5, 2015

Cask and CDAP

For starters:


So far as I can tell:

Read more

March 4, 2015

Quick update on Tachyon

I’m on record as believing that:

That said:

As a reminder of Tachyon basics:  Read more

February 22, 2015

Data models

7-10 years ago, I repeatedly argued the viewpoints:

Since then, however:

So it’s probably best to revisit all that in a somewhat organized way.

Read more

February 12, 2015

MongoDB 3.0

Old joke:

A lot has happened in MongoDB technology over the past year. For starters:

*Newly-released MongoDB 3.0 is what was previously going to be MongoDB 2.8. My clients at MongoDB finally decided to give a “bigger” release a new first-digit version number.

To forestall confusion, let me quickly add: Read more

January 19, 2015

Where the innovation is

I hoped to write a reasonable overview of current- to medium-term future IT innovation. Yeah, right. :) But if we abandon any hope that this post could be comprehensive, I can at least say:

1. Back in 2011, I ranted against the term Big Data, but expressed more fondness for the V words — Volume, Velocity, Variety and Variability. That said, when it comes to data management and movement, solutions to the V problems have generally been sketched out.

2. Even so, there’s much room for innovation around data movement and management. I’d start with:

3. As I suggested last year, data transformation is an important area for innovation.  Read more

Next Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:


Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.