Cloud computing

Analysis of cloud computing, especially as applied to database management and analytics. Related subjects include:

September 28, 2014

Some stuff on my mind, September 28, 2014

1. I wish I had some good, practical ideas about how to make a political difference around privacy and surveillance. Nothing else we discuss here is remotely as important. I presumably can contribute an opinion piece to, more or less, the technology publication(s) of my choice; that can have a small bit of impact. But I’d love to do better than that. Ideas, anybody?

2. A few thoughts on cloud, colocation, etc.:

3. As for the analytic DBMS industry: Read more

July 14, 2014

21st Century DBMS success and failure

As part of my series on the keys to and likelihood of success, I outlined some examples from the DBMS industry. The list turned out too long for a single post, so I split it up by millennia. The part on 20th Century DBMS success and failure went up Friday; in this one I’ll cover more recent events, organized in line with the original overview post. Categories addressed will include analytic RDBMS (including data warehouse appliances), NoSQL/non-SQL short-request DBMS, MySQL, PostgreSQL, NewSQL and Hadoop.

DBMS rarely have trouble with the criterion “Is there an identifiable buying process?” If an enterprise is doing application development projects, a DBMS is generally chosen for each one. And so the organization will generally have a process in place for buying DBMS, or accepting them for free. Central IT, departments, and — at least in the case of free open source stuff — developers all commonly have the capacity for DBMS acquisition.

In particular, at many enterprises either departments have the ability to buy their own analytic technology, or else IT will willingly buy and administer things for a single department. This dynamic fueled much of the early rise of analytic RDBMS.

Buyer inertia is a greater concern.

A particularly complex version of this dynamic has played out in the market for analytic RDBMS/appliances.

Otherwise I’d say:  Read more

May 6, 2014

Notes and comments, May 6, 2014

After visiting California recently, I made a flurry of posts, several of which generated considerable discussion.

Here is a catch-all post to complete the set.  Read more

April 17, 2014

MongoDB is growing up

I caught up with my clients at MongoDB to discuss the recent MongoDB 2.6, along with some new statements of direction. The biggest takeaway is that the MongoDB product, along with the associated MMS (MongoDB Management Service), is growing up. Aspects include:

Read more

March 23, 2014

Wants vs. needs

In 1981, Gerry Chichester and Vaughan Merlyn did a user-survey-based report about transaction-oriented fourth-generation languages, the leading application development technology of their day. The report included top-ten lists of important features during the buying cycle and after implementation. The items on each list were very similar — but the order of the items was completely different. And so the report highlighted what I regard as an eternal truth of the enterprise software industry:

What users value in the product-buying process is quite different from what they value once a product is (being) put into use.

Here are some thoughts about how that comes into play today.

Wants outrunning needs

1. For decades, BI tools have been sold in large part via demos of snazzy features the CEO would like to have on his desk. First it was pretty colors; then it was maps; now sometimes it’s “real-time” changing displays. Other BI features, however, are likely to be more important in practice.

2. In general, the need for “real-time” BI data freshness is often exaggerated. If you’re a human being doing a job that’s also often automated at high speed — for example network monitoring or stock trading — there’s a good chance you need fully human real-time BI. Otherwise, how much does a 5-15 minute delay hurt? Even if you’re monitoring website sell-through — are your business volumes really high enough that 5 minutes matters much? eBay answered “yes” to that question many years ago, but few of us work for businesses anywhere near eBay’s scale.

Even so, the want for speed keeps growing stronger. :)

3. Similarly, some desires for elastic scale-out are excessive. Your website selling koi pond accessories should always run well on a single server. If you diversify your business to the point that that’s not true, you’ll probably rewrite your app by then as well.

4. Some developers want to play with cool new tools. That doesn’t mean those tools are the best choice for the job. In particular, boring old SQL has merits — such as joins! — that shiny NoSQL hasn’t yet replicated.

5. Some developers, on the other hand, want to keep using their old tools, on which they are their employers’ greatest experts. That doesn’t mean those tools are the best choice for the job either.

6. More generally, some enterprises insist on brand labels that add little value but lots of expense. Yes, there are many benefits to vendor consolidation, and you may avoid many headaches if you stick with not-so-cutting-edge technology. But “enterprise-grade” hardware failure rates may not differ enough from “consumer-grade” ones to be worth paying for.

Read more

March 17, 2014

Notes and comments, March 17, 2014

I have ever more business-advice posts up on Strategic Messaging. Recent subjects include pricing and stealth-mode marketing. Other stuff I’ve been up to includes:

The Spark buzz keeps increasing; almost everybody I talk with expects Spark to win big, probably across several use cases.

Disclosure: I’ll soon be in a substantial client relationship with Databricks, hoping to improve their stealth-mode marketing. :D

The “real-time analytics” gold rush I called out last year continues. A large fraction of the vendors I talk with have some variant of “real-time analytics” as a central message.

Basho had a major change in leadership. A Twitter exchange ensued. :) Joab Jackson offered a more sober — figuratively and literally — take.

Hadapt laid off its sales and marketing folks, and perhaps some engineers as well. In a nutshell, Hadapt’s approach to SQL-on-Hadoop wasn’t selling vs. the many alternatives, and Hadapt is doubling down on poly-structured data*/schema-on-need.

*While Hadapt doesn’t to my knowledge use the term “poly-structured data”, some other vendors do. And so I may start using it more myself, at least when the poly-structured/multi-structured distinction actually seems significant.

WibiData is partnering with DataStax, WibiData is of course pleased to get access to Cassandra’s user base, which gave me the opportunity to ask why they thought Cassandra had beaten HBase in those accounts. The answer was performance and availability, while Cassandra’s traditional lead in geo-distribution wasn’t mentioned at all.

Disclosure: My fingerprints are all over that deal.

In other news, WibiData has had some executive departures as well, but seems to be staying the course on its strategy. I continue to think that WibiData has a really interesting vision about how to do large-data-volume interactive computing, and anybody in that space would do well to talk with them or at least look into the open source projects WibiData sponsors.

I encountered another apparently-popular machine-learning term — bandit model. It seems to be glorified A/B testing, and it seems to be popular. I think the point is that it tries to optimize for just how much you invest in testing unproven (for good or bad) alternatives.

I had an awkward set of interactions with Gooddata, including my longest conversations with them since 2009. Gooddata is in the early days of trying to offer an all-things-to-all-people analytic stack via SaaS (Software as a Service). I gather that Hadoop, Vertica, PostgreSQL (a cheaper Vertica alternative), Spark, Shark (as a faster version of Hive) and Cassandra (under the covers) are all in the mix — but please don’t hold me to those details.

I continue to think that computing is moving to a combination of appliances, clusters, and clouds. That said, I recently bought a new gaming-class computer, and spent many hours gaming on it just yesterday.* I.e., there’s room for general-purpose workstations as well. But otherwise, I’m not hearing anything that contradicts my core point.

*The last beta weekend for The Elder Scrolls Online; I loved Morrowind.

November 24, 2013

Thoughts on SaaS

Generalizing about SaaS (Software as a Service) is hard. To prune some of the confusion, let’s start by noting:

For smaller enterprises, the core outsourcing argument is compelling. How small? Well:

So except for special cases, an enterprise with less than $100 million or so in revenue may have trouble affording on-site data processing, at least at a mission-critical level of robustness. It may well be better to use NetSuite or something like that, assuming needed features are available in SaaS form.*

Read more

October 30, 2013

Glassbeam instantiates a lot of trends

Glassbeam checked in recently, and they turn out to exemplify quite a few of the themes I’ve been writing about. For starters:

Glassbeam basics include:

All Glassbeam customers except one are SaaS/cloud (Software as a Service), and even that one was only offered a subscription (as oppose to perpetual license) price.

So what does Glassbeam’s technology do? Glassbeam says it is focused on “machine data analytics,” specifically for the “Internet of Things”, which it distinguishes from IT logs.* Specifically, Glassbeam sells to manufacturers of complex devices — IT (most of its sales so far ), medical, automotive (aspirational to date), etc. — and helps them analyze “phone home” data, for both support/customer service and marketing kinds of use cases. As of a recent release, the Glassbeam stack can: Read more

September 29, 2013

ClearStory, Spark, and Storm

ClearStory Data is:

I think I can do an interesting post about ClearStory while tap-dancing around the still-secret stuff, so let’s dive in.

ClearStory:

To a first approximation, ClearStory ingests data in a system built on Storm (code name: Stormy), dumps it into HDFS, and then operates on it in a system built on Spark (code name: Sparky). Along the way there’s a lot of interaction with another big part of the system, a metadata catalog with no code name I know of. Or as I keep it straight:

Read more

August 24, 2013

Hortonworks business notes

Hortonworks did a business-oriented round of outreach, talking with at least Derrick Harris and me. Notes  from my call — for which Rob Bearden* didn’t bother showing up — include, in no particular order:

*Speaking of CEO Bearden, an interesting note from Derrick’s piece is that Bearden is quoted as saying “I started this company from day one …”, notwithstanding that the now-departed Eric Baldeschwieler was founding CEO.

In Hortonworks’ view, Hadoop adopters typically start with a specific use case around a new type of data, such as clickstream, sensor, server log, geolocation, or social.  Read more

Next Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.