August 26, 2010

More on NoSQL and HVSP (or OLRP)

Since posting last Wednesday morning that I’m looking into NoSQL and HVSP, I’ve had a lot of conversations, including with (among others):

Read more

June 30, 2010

Cloudera Enterprise and Hadoop evolution

I talked with Cloudera a couple of weeks ago in connection with the impending release of Cloudera Enterprise. I’d say:  Read more

February 11, 2010

Intelligent Enterprise’s Editors’/Editor’s Choice list for 2010

As he has before, Intelligent Enterprise Editor Doug Henschen

(Actually, he’s really called it an “award.”)

Read more

December 30, 2009

Clearing up MapReduce confusion, yet again

I’m frustrated by a constant need — or at least urge 🙂 — to correct myths and errors about MapReduce. Let’s try one more time: Read more

October 18, 2009

Three big myths about MapReduce

Once again, I find myself writing and talking a lot about MapReduce. But I suspect that MapReduce-related conversations would go better if we overcame three fairly common MapReduce myths:

Read more

October 10, 2009

How 30+ enterprises are using Hadoop

MapReduce is definitely gaining traction, especially but by no means only in the form of Hadoop. In the aftermath of Hadoop World, Jeff Hammerbacher of Cloudera walked me quickly through 25 customers he pulled from Cloudera’s files. Facts and metrics ranged widely, of course:

Read more

October 1, 2009

MapReduce tidbits

I’ve never had children, and so have never had to supervise squabbling siblings, each accusing the other of selfishness and insufficient sharing. Perhaps the MapReduce vendors are a form of karmic payback. Be that as it may, my client Cloudera has organized Hadoop World on October 2 in New York, and my other client Aster Data is hosting a MapReduce-centric Big Data Summit the night before, at the same venue. Even if you don’t go, both conference’s agenda pages offer a peek into what’s going on in MapReduce applications. I’m not going either, but even so I hope to post an overview of MapReduce uses after the conferences serve to publicize some of them.

Even better, I plan to hold a couple of webinars on MapReduce, the first at 10 am (blech) and 1 pm Eastern time on October 15. They’re sponsored by Aster Data, and so will have a strong SQL/MapReduce orientation.

In connection with its conference, Aster is introducing an nCluster-Hadoop connector — i.e., a loader from HDFS (Hadoop Distributed File System) implemented in SQL/MapReduce. In particular: Read more

August 4, 2009

Vertica’s version of MapReduce integration

I talked with Omer Trajman of Vertica Monday night about Vertica’s MapReduce integration, part of its Vertica 3.5 release. Highlights included:

Apparently, the use cases for Vertica/Hadoop integration to date lie in algorithmic trading and two kinds of web analytics. Specifically: Read more

April 15, 2009

Cloudera presents the MapReduce bull case

Monday was fire-drill day regarding MapReduce vs. MPP relational DBMS. The upshot was that I was quoted in Computerworld and paraphrased in GigaOm as being a little more negative on MapReduce than I really am, in line with my comment

Frankly, my views on MapReduce are more balanced than [my] weary negativity would seem to imply.

Tuesday afternoon the dial turned a couple notches more positive yet, when I talked with Michael Olson and Jeff Hammerbacher of Cloudera. Cloudera is a new company, built around the open source MapReduce implementation Hadoop. So far Cloudera gives away its Hadoop distribution, without charging for any sort of maintenance or subscription, and just gets revenue from professional services. Presumably, Cloudera plans for this business model to change down the road.

Much of our discussion revolved around Facebook, where Jeff directed a huge and diverse Hadoop effort. Apparently, Hadoop played much of the role of an enterprise data warehouse at Facebook — at least for clickstream/network data — including:

Some Facebook data, however, was put into an Oracle RAC cluster for business intelligence. And Jeff does concede that query execution is slower in Hadoop than in a relational DBMS. Hadoop was also used to build the index for Facebook’s custom text search engine.

Jeff’s reasons for liking Hadoop over relational DBMS at Facebook included: Read more

← Previous Page

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.