More on NoSQL and HVSP (or OLRP)
Since posting last Wednesday morning that I’m looking into NoSQL and HVSP, I’ve had a lot of conversations, including with (among others):
- Dwight Merriman of 10gen (MongoDB)
- Damien Katz of Couchio (CouchDB)
- Matt Pfeil of Riptano (Cassandra)
- Todd Lipcon of Cloudera (HBase committer)
- Tony Falco of Basho (Riak)
- John Busch of Schooner
- Ori Herrnstadt of Akiban
Cloudera Enterprise and Hadoop evolution
I talked with Cloudera a couple of weeks ago in connection with the impending release of Cloudera Enterprise. I’d say: Read more
Intelligent Enterprise’s Editors’/Editor’s Choice list for 2010
As he has before, Intelligent Enterprise Editor Doug Henschen
- Personally selected annual lists of 12 “Most influential” companies and 36 “Companies to watch” in analytics- and database-related sectors.
- Made it clear that these are his personal selections.
- Nonetheless has called it an Editors’ Choice list, rather than Editor’s Choice. 🙂
(Actually, he’s really called it an “award.”)
Clearing up MapReduce confusion, yet again
I’m frustrated by a constant need — or at least urge 🙂 — to correct myths and errors about MapReduce. Let’s try one more time: Read more
Categories: Analytic technologies, Aster Data, Cloudera, Data warehousing, Google, Hadoop, MapReduce, SenSage, Splunk | 8 Comments |
Three big myths about MapReduce
Once again, I find myself writing and talking a lot about MapReduce. But I suspect that MapReduce-related conversations would go better if we overcame three fairly common MapReduce myths:
- MapReduce is something very new
- MapReduce involves strict adherence to the Map-Reduce programming paradigm
- MapReduce is a single technology
Categories: Analytic technologies, Aster Data, Cloudera, Data warehousing, Google, Greenplum, Hadoop, Log analysis, MapReduce, Michael Stonebraker, Parallelization, Web analytics | 11 Comments |
How 30+ enterprises are using Hadoop
MapReduce is definitely gaining traction, especially but by no means only in the form of Hadoop. In the aftermath of Hadoop World, Jeff Hammerbacher of Cloudera walked me quickly through 25 customers he pulled from Cloudera’s files. Facts and metrics ranged widely, of course:
- Some are in heavy production with Hadoop, and closely engaged with Cloudera. Others are active Hadoop users but are very secretive. Yet others signed up for initial Hadoop training last week.
- Some have Hadoop clusters in the thousands of nodes. Many have Hadoop clusters in the 50-100 node range. Others are just prototyping Hadoop use. And one seems to be “OEMing” a small Hadoop cluster in each piece of equipment sold.
- Many export data from Hadoop to a relational DBMS; many others just leave it in HDFS (Hadoop Distributed File System), e.g. with Hive as the query language, or in exactly one case Jaql.
- Some are household names, in web businesses or otherwise. Others seem to be pretty obscure.
- Industries include financial services, telecom (Asia only, and quite new), bioinformatics (and other research), intelligence, and lots of web and/or advertising/media.
- Application areas mentioned — and these overlap in some cases — include:
- Log and/or clickstream analysis of various kinds
- Marketing analytics
- Machine learning and/or sophisticated data mining
- Image processing
- Processing of XML messages
- Web crawling and/or text processing
- General archiving, including of relational/tabular data, e.g. for compliance
MapReduce tidbits
I’ve never had children, and so have never had to supervise squabbling siblings, each accusing the other of selfishness and insufficient sharing. Perhaps the MapReduce vendors are a form of karmic payback. Be that as it may, my client Cloudera has organized Hadoop World on October 2 in New York, and my other client Aster Data is hosting a MapReduce-centric Big Data Summit the night before, at the same venue. Even if you don’t go, both conference’s agenda pages offer a peek into what’s going on in MapReduce applications. I’m not going either, but even so I hope to post an overview of MapReduce uses after the conferences serve to publicize some of them.
Even better, I plan to hold a couple of webinars on MapReduce, the first at 10 am (blech) and 1 pm Eastern time on October 15. They’re sponsored by Aster Data, and so will have a strong SQL/MapReduce orientation.
In connection with its conference, Aster is introducing an nCluster-Hadoop connector — i.e., a loader from HDFS (Hadoop Distributed File System) implemented in SQL/MapReduce. In particular: Read more
Categories: Aster Data, Cloudera, Data warehousing, Hadoop, MapReduce | 7 Comments |
Vertica’s version of MapReduce integration
I talked with Omer Trajman of Vertica Monday night about Vertica’s MapReduce integration, part of its Vertica 3.5 release. Highlights included:
- By “integrating Vertica and MapReduce,” Vertica means “integrating Vertica and Hadoop.”
- Vertica’s Hadoop integration is based on Cloudera’s DBInputFormat.
- Omer called out for me several features of Vertica’s Hadoop integration that didn’t just come from Cloudera, namely:
- Cloudera’s DBInputFormat assumes the database runs on a single computer, or a single head node of an MPP system. Vertica’s technology, however, runs on peer parallel nodes with no head, and so Vertica adapted the DBInputFormat technology accordingly.
- Vertica lets you push down Map functions to the database. Omer reports a roughly even division among users and prospects between those who want to do this and ones who don’t.
- Vertica lets you do Reduce functions (or Map functions, if you don’t push them down to the database) on a separate cluster than you run the database software. Vertica asserts that its customers and prospects all want to do this. Right here is the big difference between Vertica’s MapReduce integration and Aster’s or Greenplum’s. (Aster would also say that Vertica’s weaker MapReduce/SQL programming integration is a big difference as well.)
- Indeed, Vertica lets you Reduce into a different DBMS than Vertica, if you choose.
- Vertica gives you flexibility on the size of the Map and Reduce clusters. Omer agreed with me when I said there were some limits on how fast one can add or subtract nodes in a Vertica grid, because there’s data redistribution involved. But one can add/change/delete Hadoop clusters extremely quickly.
Apparently, the use cases for Vertica/Hadoop integration to date lie in algorithmic trading and two kinds of web analytics. Specifically: Read more
Cloudera presents the MapReduce bull case
Monday was fire-drill day regarding MapReduce vs. MPP relational DBMS. The upshot was that I was quoted in Computerworld and paraphrased in GigaOm as being a little more negative on MapReduce than I really am, in line with my comment
Frankly, my views on MapReduce are more balanced than [my] weary negativity would seem to imply.
Tuesday afternoon the dial turned a couple notches more positive yet, when I talked with Michael Olson and Jeff Hammerbacher of Cloudera. Cloudera is a new company, built around the open source MapReduce implementation Hadoop. So far Cloudera gives away its Hadoop distribution, without charging for any sort of maintenance or subscription, and just gets revenue from professional services. Presumably, Cloudera plans for this business model to change down the road.
Much of our discussion revolved around Facebook, where Jeff directed a huge and diverse Hadoop effort. Apparently, Hadoop played much of the role of an enterprise data warehouse at Facebook — at least for clickstream/network data — including:
- 2 1/2 petabytes of data managed via Hadoop
- 10 terabytes/day of data ingested via Hadoop (Edit: Some of these metrics have been updated in a subsequent post about Facebook.)
- Ad targeting queries run every 15 minutes in Hadoop
- Dashboard roll-up queries run every hour in Hadoop
- Ad-hoc research/analytic Hadoop queries run whenever
- Anti-fraud analysis done in Hadoop
- Text mining (e.g., of things written on people’s “walls”) done in Hadoop
- 100s or 1000s of simultaneous Hadoop queries
- JSON-based social network analysis in Hadoop
Some Facebook data, however, was put into an Oracle RAC cluster for business intelligence. And Jeff does concede that query execution is slower in Hadoop than in a relational DBMS. Hadoop was also used to build the index for Facebook’s custom text search engine.
Jeff’s reasons for liking Hadoop over relational DBMS at Facebook included: Read more