January 28, 2011

Schooner — flash-based, now software-only, and very fast

Last October I wrote about Schooner Information Technology, which made flash-based appliances, for MySQL, memcached, or persistent memcached. Schooner sold those appliances to close to 20 customers, but even so decided software-only was a better way to go.

Schooner’s core value proposition is that one Schooner box with flash does the job of a lot of MySQL or NoSQL boxes with hard drives. Highlights of the Schooner story — of which you can find more detail at the Schooner website — now include:  Read more

January 25, 2011

ScaleBase, another MPP OLTP quasi-DBMS

Liran Zelkha of ScaleBase raised his hand on Twitter. It turns out ScaleBase has a story rather similar to that of CodeFutures/dbShards. That is:

Our talk didn’t get deeply technical, and I don’t know exactly how ScaleBase’s replication works. But a website reference to a small transaction log in a distributed cache does sound, while not identical to the dbShards approach, at least directionally similar.

ScaleBase is a year or so old, with about 6 people, based in the Boston area despite strong Israeli roots. ScaleBase has raised a round of venture capital; I didn’t ask for details.

Liran says that ScaleBase is in closed beta, with some production users, at least one of whom has over 100 database servers.

January 25, 2011

dbShards update

I talked yesterday with Cory Isaacson of CodeFutures, and hence can follow up on my previous post about dbShards. dbShards basics include:

One dbShards customer writes 1/2 billion rows on a busy day, and serves 3-4,000 pages per second, naturally with multiple queries per page. This is on a 32-node cluster, with uninspiring hardware, in the cloud. The database has 16 shards, aggregating 128 virtual shards. I forgot to ask how big the database actually is. Overall, dbShards is up to a dozen or so signed customers, half of whom are in production or soon will be.

dbShards’ replication scheme works like this:  Read more

January 24, 2011

Choices in analytic computing system design

When I posted a long list of architectural options for analytic DBMS, I left a couple of IOUs in for missing parts. One was in the area of what is sometimes called advanced-analytics functionality, which roughly speaking means aspects of analytic database management systems that are not directly related to conventional* SQL queries.

*Main examples of “conventional” = filtering, simple aggregrations.

The point of such functionality is generally twofold. First, it helps you execute analytic algorithms with high performance, due to reducing data movement and/or executing the analytics in parallel. Second, it helps you create and execute sophisticated analytic processes with (relatively) little effort.

For now, I’m going to refer to an analytic RDBMS that has been extended by advanced-analytics functionality as an analytic computing system, rather than as some kind of “platform,” although I suspect the latter term is more likely to wind up winning.  So far, there have been five major categories of subsystem or add-on module that contribute to making an analytic DBMS a more fully-fledged analytic computing system:

Read more

January 20, 2011

Notes, links, and comments January 20, 2011

I haven’t done a pure notes/links/comments post for a while. Let’s fix that now. (A bunch of saved-up links, however, did find their way into my recent privacy threats overview.)

First and foremost, the fourth annual New England Database Summit (nee “Day”) is next week, specifically Friday, January 28. As per my posts in previous years, I think well of the event, which has a friendly, gathering-of-the-clan flavor. Registration is free, but the organizers would prefer that you register online by the end of this week, if you would be so kind.

The two things potentially wrong with the New England Database Summit are parking and the rush hour drive home afterwards. I would listen with interest to any suggestions about dinner plans.

One thing I hope to figure out at the Summit or before is what the hell is going on on Vertica’s blog or, for that matter, at Vertica. The recent Mike Stonebraker post that spawned a lot of discussion and commentary has disappeared. Meanwhile, Vertica has had three consecutive heads of marketing leave the company since June, and I don’t know who to talk to there any more.  Read more

January 19, 2011

Sound bites on HP/Microsoft and Neoview

HP and Microsoft put out a press release.  Three new appliances are being announced, and we’re being reminded of at least one past announcement. I wasn’t briefed, and wouldn’t want to comment on, say, price/performance or feature particulars. That said:

January 18, 2011

Architectural options for analytic database management systems

Mike Stonebraker recently kicked off some discussion about desirable architectural features of a columnar analytic DBMS. Let’s expand the conversation to cover desirable architectural characteristics of analytic DBMS in general.  Read more

January 12, 2011

Mike Stonebraker on “real column stores”

Mike Stonebraker has a post up on Vertica’s blog trying to differentiate “real” from “pretend” column stores. (Edit: That post seems to have come back down, but as of 1/19 it can be found in Google Cache.) In essence, Mike argues that the One Right Way to design a column store is Vertica’s, a position that Daniel Abadi used to share but since has retreated from.

There are some good things about that post, and some not-so-good. The worst paragraph is probably

Several row-store vendors (including Oracle, Greenplum and Aster Data) now claim to be selling a column store.   Obviously, this would require a complete rewrite of a DBMS to move from Figure 1 to Figure 2.  Hence, none of the “pretenders” have actually done this.  Instead all have implemented some aspects of column stores, and then claim to be the real thing.  This blog defines what the “real enchilada” looks like, and how to tell it from the pretenders.

which I question on two levels. Read more

January 3, 2011

The six useful things you can do with analytic technology

I seem to be in the mode of sharing some of my frameworks for thinking about analytic technology. Here’s another one.

Ultimately, there are six useful things you can do with analytic technology:

Technology vendors often cite similar taxonomies, claiming to have all the categories (as they conceive them) nicely represented, in slickly integrated fashion. They exaggerate. Most of these categories are in rapid flux, and the rest should be. Analytic technology still has a long way to go.

In more detail:  Read more

November 29, 2010

Document-oriented DBMS without joins

When I talked with MarkLogic’s Ken Chestnut about MarkLogic 4.2, I was surprised to learn that MarkLogic really, truly doesn’t do anything like a join. Unlike some other non-SQL DBMS, MarkLogic has no SQL interface, no ODBC or JDBC. Nothing, nada. (MarkLogic has a Java interface for Xquery, but not for anything like SQL.)

Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.