May 30, 2016

Adversarial analytics and other topics

Five years ago, in a taxonomy of analytic business benefits, I wrote:

A large fraction of all analytic efforts ultimately serve one or more of three purposes:

  • Marketing
  • Problem and anomaly detection and diagnosis
  • Planning and optimization

That continues to be true today. Now let’s add a bit of spin.

1. A large fraction of analytics is adversarial. In particular: Read more

May 18, 2016

Surveillance data in ordinary law enforcement

One of the most important issues in privacy and surveillance is also one of the least-discussed — the use of new surveillance technologies in ordinary law enforcement. Reasons for this neglect surely include:

One major thread in the United States is: Read more

May 18, 2016

Governments vs. tech companies — it’s complicated

Numerous tussles fit the template:

As a general rule, what’s best for any kind of company is — pricing and so on aside — whatever is best or most pleasing for their customers or users. This would suggest that it is in tech companies’ best interest to favor privacy, but there are two important quasi-exceptions: Read more

May 18, 2016

Privacy and surveillance require our attention

This year, privacy and surveillance issues have been all over the news. The most important, in my opinion, deal with the tension among:

More precisely, I’d say that those are the most important in Western democracies. The biggest deal worldwide may be China’s movement towards an ever-more-Orwellian surveillance state.

The main examples on my mind — each covered in a companion post — are:

Legislators’ thinking about these issues, at least in the US, seems to be confused but relatively nonpartisan. Support for these assertions includes:

I do think we are in for a spate of law- and rule-making, especially in the US. Bounds on the possible outcomes likely include: Read more

May 18, 2016

I’m having issues with comment spam

My blogs are having a bad time with comment spam. While Akismet and other safeguards are intercepting almost all of the ~5000 attempted spam comments per day, the small fraction that get through are still a large absolute number to deal with.

There’s some danger I’ll need to restrict comments here to combat it. (At the moment they’ve been turned off almost entirely on Text Technologies, which may be awkward if I want to put a post up there rather than here.) If I do, I’ll say so in a separate post. I apologize in advance for any inconvenience.

February 15, 2016

Some checklists for making technical choices

Whenever somebody asks for my help on application technology strategy, I start by trying to ascertain three things. The absolute first is actually a prerequisite to almost any kind of useful conversation, which is to ascertain in general terms what the hell it is that we are talking about. :)

My second goal is to ascertain technology constraints. Three common types are:

That’s often a short and straightforward discussion, except in those awkward situations when all three of my bullet points above are applicable at once.

The third item is usually more interesting. I try to figure out what is to be accomplished. That’s usually not a simple matter, because the initial list of goals and requirements is almost never accurate. It’s actually more common that I have to tell somebody to be more ambitious than that I need to rein them in.

Commonly overlooked needs include:

And if you take one thing away from this post, then take this:

I guarantee it.

Read more

January 25, 2016

Kafka and more

In a companion introduction to Kafka post, I observed that Kafka at its core is remarkably simple. Confluent offers a marchitecture diagram that illustrates what else is on offer, about which I’ll note:

Kafka offers little in the way of analytic data transformation and the like. Hence, it’s commonly used with companion products.  Read more

January 25, 2016

Kafka and Confluent

For starters:

At its core Kafka is very simple:

So it seems fair to say:

Read more

January 22, 2016

Cloudera in the cloud(s)

Cloudera released Version 2 of Cloudera Director, which is a companion product to Cloudera Manager focused specifically on the cloud. This led to a discussion about — you guessed it! — Cloudera and the cloud.

Making Cloudera run in the cloud has three major aspects:

Features new in this week’s release of Cloudera Director include:

I.e., we’re talking about some pretty basic/checklist kinds of things. Cloudera Director is evidently working for Amazon AWS and Google GCP, and planned for Windows Azure, VMware and OpenStack.

As for porting, let me start by noting: Read more

January 14, 2016

BI and quasi-DBMS

I’m on two overlapping posting kicks, namely “lessons from the past” and “stuff I keep saying so might as well also write down”. My recent piece on Oracle as the new IBM is an example of both themes. In this post, another example, I’d like to memorialize some points I keep making about business intelligence and other analytics. In particular:

Similarly, BI has often been tied to data integration/ETL (Extract/Transform/Load) functionality.* But I won’t address that subject further at this time.

*In the Hadoop/Spark era, that’s even truer of other analytics than it is of BI.

My top historical examples include:

Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:


Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.