Solid-state memory

Discussion of how developments in solid-state memory will affect database management. Related subjects include:

August 31, 2014

Notes from a visit to Teradata

I spent a day with Teradata in Rancho Bernardo last week. Most of what we discussed is confidential, but I think the non-confidential parts and my general impressions add up to enough for a post.

First, let’s catch up with some personnel gossip. So far as I can tell:

The biggest change in my general impressions about Teradata is that they’re having smart thoughts about the cloud. At least, Oliver is. All details are confidential, and I wouldn’t necessarily expect them to become clear even in October (which once again is the month for Teradata’s user conference). My main concern about all that is whether Teradata’s engineering team can successfully execute on Oliver’s directives. I’m optimistic, but I don’t have a lot of detail to support my good feelings.

In some quick-and-dirty positioning and sales qualification notes, which crystallize what we already knew before:

Also: Read more

May 6, 2014

Notes and comments, May 6, 2014

After visiting California recently, I made a flurry of posts, several of which generated considerable discussion.

Here is a catch-all post to complete the set.  Read more

April 30, 2014

Hardware and storage notes

My California trip last week focused mainly on software — duh! — but I had some interesting hardware/storage/architecture discussions as well, especially in the areas of:

I also got updated as to typical Hadoop hardware.

If systems are designed at the whole-rack level or higher, then there can be much more flexibility and efficiency in terms of mixing and connecting CPU, RAM and storage. The Google/Facebook/Amazon cool kids are widely understood to be following this approach, so others are naturally considering it as well. My most interesting of several mentions of that point was when I got the chance to talk with Berkeley computer architecture guru Dave Patterson, who’s working on plans for 100-petabyte/terabit-networking kinds of systems, for usage after 2020 or so. (If you’re interested, you might want to contact him; I’m sure he’d love more commercial sponsorship.)

One of Dave’s design assumptions is that Moore’s Law really will end soon (or at least greatly slow down), if by Moore’s Law you mean that every 18 months or so one can get twice as many transistors onto a chip of the same area and cost than one could before. However, while he thinks that applies to CPU and RAM, Dave thinks flash is an exception. I gathered that he thinks the power/heat reasons for Moore’s Law to end will be much harder to defeat than the other ones; note that flash, because of what it’s used for, has vastly less power running through it than CPU or RAM do.

Read more

February 10, 2014

MemSQL 3.0

Memory-centric data management is confusing. And so I’m going to clarify a couple of things about MemSQL 3.0 even though I don’t yet have a lot of details.* They are:

*MemSQL’s first columnar offering sounds pretty basic; for example, there’s no columnar compression yet. (Edit: Oops, that’s not accurate. See comment below.) But at least they actually have one, which puts them ahead of many other row-based RDBMS vendors that come to mind.

And to hammer home the contrast:

September 8, 2013

Layering of database technology & DBMS with multiple DMLs

Two subjects in one post, because they were too hard to separate from each other

Any sufficiently complex software is developed in modules and subsystems. DBMS are no exception; the core trinity of parser, optimizer/planner, and execution engine merely starts the discussion. But increasingly, database technology is layered in a more fundamental way as well, to the extent that different parts of what would seem to be an integrated DBMS can sometimes be developed by separate vendors.

Major examples of this trend — where by “major” I mean “spanning a lot of different vendors or projects” — include:

Other examples on my mind include:

And there are several others I hope to blog about soon, e.g. current-day PostgreSQL.

In an overlapping trend, DBMS increasingly have multiple data manipulation APIs. Examples include:  Read more

August 6, 2013

Hortonworks, Hadoop, Stinger and Hive

I chatted yesterday with the Hortonworks gang. The main subject was Hortonworks’ approach to SQL-on-Hadoop — commonly called Stinger —  but at my request we cycled through a bunch of other topics as well. Company-specific notes include:

Our deployment and use case discussions were a little confused, because a key part of Hortonworks’ strategy is to support and encourage the idea of combining use cases and workloads on a single cluster. But I did hear:

*By the way — Teradata seems serious about pushing the UDA as a core message.

Ecosystem notes, in Hortonworks’ perception, included:

I also asked specifically about OpenStack. Hortonworks is a member of the OpenStack project, contributes nontrivially to Swift and other subprojects, and sees Rackspace as an important partner. But despite all that, I think strong Hadoop/OpenStack integration is something for the indefinite future.

Hortonworks’ views about Hadoop 2.0 start from the premise that its goal is to support running a multitude of workloads on a single cluster. (See, for example, what I previously posted about Tez and YARN.) Timing notes for Hadoop 2.0 include:

Frankly, I think Cloudera’s earlier and necessarily incremental Hadoop 2 rollout was a better choice than Hortonworks’ later big bang, even though the core-mission aspect of Hadoop 2.0 is what was least ready. HDFS (Hadoop Distributed File System) performance, NameNode failover and so on were well worth having, and it’s more than a year between Cloudera starting supporting them and when Hortonworks is offering Hadoop 2.0.

Hortonworks’ approach to doing SQL-on-Hadoop can be summarized simply as “Make Hive into as good an analytic RDBMS as possible, all in open source”. Key elements include:  Read more

February 21, 2013

One database to rule them all?

Perhaps the single toughest question in all database technology is: Which different purposes can a single data store serve well? — or to phrase it more technically — Which different usage patterns can a single data store support efficiently? Ted Codd was on multiple sides of that issue, first suggesting that relational DBMS could do everything and then averring they could not. Mike Stonebraker too has been on multiple sides, first introducing universal DBMS attempts with Postgres and Illustra/Informix, then more recently suggesting the world needs 9 or so kinds of database technology. As for me — well, I agreed with Mike both times. :)

Since this is MUCH too big a subject for a single blog post, what I’ll do in this one is simply race through some background material. To a first approximation, this whole discussion is mainly about data layouts — but only if we interpret that concept broadly enough to comprise:

To date, nobody has ever discovered a data layout that is efficient for all usage patterns. As a general rule, simpler data layouts are often faster to write, while fancier ones can boost query performance. Specific tradeoffs include, but hardly are limited to: Read more

October 17, 2012

Notes on Hadoop hardware

I talked with Cloudera yesterday about an unannounced technology, and took the opportunity to ask some non-embargoed questions as well. In particular, I requested an update to what I wrote last year about typical Hadoop hardware.

Cloudera thinks the picture now is:

Discussion around that included:

Read more

October 17, 2012

Notes on analytic hardware

I took the opportunity of Teradata’s Aster/Hadoop appliance announcement to catch up with Teradata hardware chief Carson Schmidt. I love talking with Carson, about both general design philosophy and his views on specific hardware component technologies.

From a hardware-requirements standpoint, Carson seems to view Aster and Hadoop as more similar to each other than either is to, say, a Teradata Active Data Warehouse. In particular, for Aster and Hadoop:

The most obvious implication is differences in the choice of parts, and of their ratio. Also, in the new Aster/Hadoop appliance, Carson is content to skate by with RAID 5 rather than RAID 1.

I think Carson’s views about flash memory can be reasonably summarized as: Read more

October 1, 2012

Notes on the Oracle OpenWorld Sunday keynote

I’m not at Oracle OpenWorld, but as usual that won’t keep me from commenting. My bottom line on the first night’s announcements is:

In particular:

1. At the highest level, my view of Oracle’s strategy is the same as it’s been for several years:

Clayton Christensen’s The Innovator’s Solution teaches us that Oracle should focus on selling a thick stack of technology to its highest-end customers, and that’s exactly what Oracle does focus on.

2. Tonight’s news is closely in line with what Oracle’s Juan Loaiza told me three years ago, especially:

  • Oracle thinks flash memory is the most important hardware technology of the decade, one that could lead to Oracle being “bumped off” if they don’t get it right.
  • Juan believes the “bulk” of Oracle’s business will move over to Exadata-like technology over the next 5-10 years. Numbers-wise, this seems to be based more on Exadata being a platform for consolidating an enterprise’s many Oracle databases than it is on Exadata running a few Especially Big Honking Database management tasks.

3. Oracle is confusing people with its comments on multi-tenancy. I suspect:

4. SaaS (Software as a Service) vendors don’t want to use Oracle, because they don’t want to pay for it.* This limits the potential impact of Oracle’s true multi-tenancy features. Even so: Read more

Next Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.