Petabyte-scale data management

Posts about database management for databases with petabytes of user data.

September 3, 2013

The Hemisphere program

Another surveillance slide deck has emerged, as reported by the New York Times and other media outlets. This one is for the Hemisphere program, which apparently:

Other notes include:

I’ve never gotten a single consistent figure, but typical CDR size seems to be in the 100s of bytes range. So I conjecture that Project Hemisphere spawned one of the first petabyte-scale databases ever.

Hemisphere Project unknowns start:  Read more

August 24, 2013

Hortonworks business notes

Hortonworks did a business-oriented round of outreach, talking with at least Derrick Harris and me. Notes  from my call — for which Rob Bearden didn’t bother showing up — include, in no particular order:

In Hortonworks’ view, Hadoop adopters typically start with a specific use case around a new type of data, such as clickstream, sensor, server log, geolocation, or social.  Read more

August 6, 2013

Hortonworks, Hadoop, Stinger and Hive

I chatted yesterday with the Hortonworks gang. The main subject was Hortonworks’ approach to SQL-on-Hadoop — commonly called Stinger —  but at my request we cycled through a bunch of other topics as well. Company-specific notes include:

Our deployment and use case discussions were a little confused, because a key part of Hortonworks’ strategy is to support and encourage the idea of combining use cases and workloads on a single cluster. But I did hear:

*By the way — Teradata seems serious about pushing the UDA as a core message.

Ecosystem notes, in Hortonworks’ perception, included:

I also asked specifically about OpenStack. Hortonworks is a member of the OpenStack project, contributes nontrivially to Swift and other subprojects, and sees Rackspace as an important partner. But despite all that, I think strong Hadoop/OpenStack integration is something for the indefinite future.

Hortonworks’ views about Hadoop 2.0 start from the premise that its goal is to support running a multitude of workloads on a single cluster. (See, for example, what I previously posted about Tez and YARN.) Timing notes for Hadoop 2.0 include:

Frankly, I think Cloudera’s earlier and necessarily incremental Hadoop 2 rollout was a better choice than Hortonworks’ later big bang, even though the core-mission aspect of Hadoop 2.0 is what was least ready. HDFS (Hadoop Distributed File System) performance, NameNode failover and so on were well worth having, and it’s more than a year between Cloudera starting supporting them and when Hortonworks is offering Hadoop 2.0.

Hortonworks’ approach to doing SQL-on-Hadoop can be summarized simply as “Make Hive into as good an analytic RDBMS as possible, all in open source”. Key elements include:  Read more

July 2, 2013

Notes and comments, July 2, 2013

I’m not having a productive week, part of the reason being a hard drive crash that took out early drafts of what were to be last weekend’s blog posts. Now I’m operating from a laptop, rather than my preferred dual-monitor set-up. So please pardon me if I’m concise even by comparison to my usual standards.

*Basic and unavoidable ETL (Extract/Transform/Load) of course excepted.

**I could call that ABC (Always Be Comparing) or ABT (Always Be Testing), but they each sound like – well, like The Glove and the Lions.

June 10, 2013

Where things stand in US government surveillance

Edit: Please see the comment thread below for updates. Please also see a follow-on post about how the surveillance data is actually used.

US government surveillance has exploded into public consciousness since last Thursday. With one major exception, the news has just confirmed what was already thought or known. So where do we stand?

My views about domestic data collection start:

*Recall that these comments are US-specific. Data retention legislation has been proposed or passed in multiple countries to require recording of, among other things, all URL requests, with the stated goal of fighting either digital piracy or child pornography.

As for foreign data: Read more

February 5, 2013

Comments on Gartner’s 2012 Magic Quadrant for Data Warehouse Database Management Systems — evaluations

To my taste, the most glaring mis-rankings in the 2012/2013 Gartner Magic Quadrant for Data Warehouse Database Management are that it is too positive on Kognitio and too negative on Infobright. Secondarily, it is too negative on HP Vertica, and too positive on ParAccel and Actian/VectorWise. So let’s consider those vendors first.

Gartner seems confused about Kognitio’s products and history alike.

Gartner is correct, however, to note that Kognitio doesn’t sell much stuff overall.

* non-existent

In the cases of HP Vertica, Infobright, ParAccel, and Actian/VectorWise, the 2012 Gartner Magic Quadrant for Data Warehouse Database Management’s facts are fairly accurate, but I dispute Gartner’s evaluation. When it comes to Vertica: Read more

August 6, 2012

Notes, links and comments August 6, 2012

I haven’t done a notes/link/comments post for a while. Time for a little catch-up.

1. MySQL now has a memcached integration story. I haven’t checked the details. The MySQL team is pretty hard to talk with, due to the heavy-handedness of Oracle’s analyst relations.

2. The Large Hadron Collider offers some serious numbers, including:

3. One application area we don’t talk about much for analytic technologies is education. However: Read more

July 2, 2012

Introduction to Yarcdata

Cray’s strategy these days seems to be:

At the moment, the main diversifications are:

The last of the three is what Cray subsidiary Yarcdata is all about. Read more

April 24, 2012

Notes on the Hadoop and HBase markets

I visited my clients at Cloudera and Hortonworks last week, along with scads of other companies. A few of the takeaways were:

October 14, 2011

Commercial software for academic use

As Jacek Becla explained:

Even so, I think that academic researchers, in the natural and social sciences alike, commonly overlook the wealth of commercial software that could help them in their efforts.

I further think that the commercial software industry could do a better job of exposing its work to academics, where by “expose” I mean:

Reasons to do so include:

Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:


Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.