February 9, 2014

Distinctions in SQL/Hadoop integration

Ever more products try to integrate SQL with Hadoop, and discussions of them seem confused, in line with Monash’s First Law of Commercial Semantics. So let’s draw some distinctions, starting with (and these overlap):

In particular:

Let’s go to some examples. Read more

December 8, 2013

DataStax/Cassandra update

Cassandra’s reputation in many quarters is:

This has led competitors to use, and get away with, sales claims along the lines of “Well, if you really need geo-distribution and can’t wait for us to catch up — which we soon will! — you should use Cassandra. But otherwise, there are better choices.”

My friends at DataStax, naturally, don’t think that’s quite fair. And so I invited them — specifically Billy Bosworth and Patrick McFadin — to educate me. Here are some highlights of that exercise.

DataStax and Cassandra have some very impressive accounts, which don’t necessarily revolve around geo-distribution. Netflix, probably the flagship Cassandra user — since Cassandra inventor Facebook adopted HBase instead — actually hasn’t been using the geo-distribution feature. Confidential accounts include:

DataStax and Cassandra won’t necessarily win customer-brag wars versus MongoDB, Couchbase, or even HBase, but at least they’re strongly in the competition.

DataStax claims that simplicity is now a strength. There are two main parts to that surprising assertion. Read more

November 8, 2013

Comments on the 2013 Gartner Magic Quadrant for Operational Database Management Systems

The 2013 Gartner Magic Quadrant for Operational Database Management Systems is out. “Operational” seems to be Gartner’s term for what I call short-request, in each case the point being that OLTP (OnLine Transaction Processing) is a dubious term when systems omit strict consistency, and when even strictly consistent systems may lack full transactional semantics. As is usually the case with Gartner Magic Quadrants:

Anyhow:  Read more

August 12, 2013

Things I keep needing to say

Some subjects just keep coming up. And so I keep saying things like:

Most generalizations about “Big Data” are false. “Big Data” is a horrific catch-all term, with many different meanings.

Most generalizations about Hadoop are false. Reasons include:

Hadoop won’t soon replace relational data warehouses, if indeed it ever does. SQL-on-Hadoop is still very immature. And you can’t replace data warehouses unless you have the power of SQL.

Note: SQL isn’t the only way to provide “the power of SQL”, but alternative approaches are just as immature.

Most generalizations about NoSQL are false. Different NoSQL products are … different. It’s not even accurate to say that all NoSQL systems lack SQL interfaces. (For example, SQL-on-Hadoop often includes SQL-on-HBase.)

Read more

June 23, 2013

Impala and Parquet

I visited Cloudera Friday for, among other things, a chat about Impala with Marcel Kornacker and colleagues. Highlights included:

Data gets into Parquet via batch jobs only — one reason it’s important that Impala run against multiple file formats — but background format conversion is another roadmap item. A single table can be split across multiple formats — e.g., the freshest data could be in HBase, with the rest is in Parquet.

Read more

June 2, 2013

WibiData and its Kiji technology

My clients at WibiData:

Yeah, I like these guys. :)

If you’re building an application that “obviously” calls for a NoSQL database, and which has a strong predictive modeling aspect, then WibiData has thought more cleverly about what you need than most vendors I can think of. More precisely, WibiData has thought cleverly about your data management, movement, crunching, serving, and integration. For pure modeling sophistication, you should look elsewhere — but WibiData will gladly integrate with or execute those models for you.

WibiData’s enabling technology, now called Kiji, is a collection of modules, libraries, and so on — think Spring — running over Hadoop/HBase. Except for some newfound modularity, it is much like what I described at the time of WibiData’s launch or what WibiData further disclosed a few months later. Key aspects include:

Read more

April 1, 2013

Some notes on new-era data management, March 31, 2013

Hmm. I probably should have broken this out as three posts rather than one after all. Sorry about that.

Performance confusion

Discussions of DBMS performance are always odd, for starters because:

But in NoSQL/NewSQL short-request processing performance claims seem particularly confused. Reasons include but are not limited to:

MongoDB and 10gen

I caught up with Ron Avnur at 10gen. Technical highlights included: Read more

February 25, 2013

Greenplum HAWQ

My former friends at Greenplum no longer talk to me, so in particular I wasn’t briefed on Pivotal HD and Greenplum HAWQ. Pivotal HD seems to be yet another Hadoop distribution, with the idea that you use Greenplum’s management tools. Greenplum HAWQ seems to be Greenplum tied to HDFS.

The basic idea seems to be much like what I mentioned a few days ago  — the low-level file store for Greenplum can now be something else one has heard of before, namely HDFS (Hadoop Distributed File System, which is also an option for, say, NuoDB). Beyond that, two interesting quotes in a Greenplum blog post are:

When a query starts up, the data is loaded out of HDFS and into the HAWQ execution engine.


In addition, it has native support for HBase, supporting HBase predicate pushdown, hive[sic] connectivity, and offering a ton of intelligent features to retrieve HBase data.

The first sounds like the invisible loading that Daniel Abadi wrote about last September on Hadapt’s blog. (Edit: Actually, see Daniel’s comment below.) The second sounds like a good idea that, again, would also be a natural direction for vendors such as Hadapt.

February 22, 2013

Should you offer “complete” analytic applications?

WibiData is essentially on the trajectory:

The same, it turns out, is true of Causata.* Talking with them both the same day led me to write this post. Read more

November 1, 2012

More on Cloudera Impala

What I wrote before about Cloudera Impala was quite incomplete. After a followup call, I now feel I have a better handle on the whole thing.

First, some basics:

The general technical idea of Impala is:

Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:


Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.