Analysis of open source DBMS vendor MySQL (recently acquired by Sun Microsystems), its products, and other products in the MySQL ecosystem. Related subjects include:

April 14, 2013

Introduction to Deep Information Sciences and DeepDB

I talked Friday with Deep Information Sciences, makers of DeepDB. Much like TokuDB — albeit with different technical strategies — DeepDB is a single-server DBMS in the form of a MySQL engine, whose technology is concentrated around writing indexes quickly. That said:

*For reasons that do not seem closely related to product reality, DeepDB is marketed as if it supports “unstructured” data today.

Other NewSQL DBMS seem “designed for big data and the cloud” to at least the same extent DeepDB is. However, if we’re interpreting “big data” to include multi-structured data support — well, only half or so of the NewSQL products and companies I know of share Deep’s interest in branching out. In particular:

Edit: MySQL has some sort of an optional NoSQL interface, and hence so presumably do MySQL-compatible TokuDB, GenieDB, Clustrix, and MemSQL.

Also, some of those products do not today have the transparent scale-out that Deep plans to offer in the future.

Read more

January 7, 2013

Introduction to GenieDB

GenieDB is one of the newer and smaller NewSQL companies. GenieDB’s story is focused on wide-area replication and uptime, coupled to claims about ease and the associated low TCO (Total Cost of Ownership).

GenieDB is in my same family of clients as Cirro.

The GenieDB product is more interesting if we conflate the existing GenieDB Version 1 and a soon-forthcoming (mid-year or so) Version 2. On that basis:

The heart of the GenieDB story is probably wide-area replication. Specifics there include:  Read more

January 5, 2013

NewSQL thoughts

I plan to write about several NewSQL vendors soon, but first here’s an overview post. Like “NoSQL”, the term “NewSQL” has an identifiable, recent coiner — Matt Aslett in 2011 — yet a somewhat fluid meaning. Wikipedia suggests that NewSQL comprises three things:

I think that’s a pretty good working definition, and will likely remain one unless or until:

To date, NewSQL adoption has been limited.

That said, the problem may lie more on the supply side than in demand. Developing a competitive SQL DBMS turns out to be harder than developing something in the NoSQL state of the art.

Read more

December 12, 2012

Some trends that will continue in 2013

I’m usually annoyed by lists of year-end predictions. Still, a reporter asked me for some, and I found one kind I was comfortable making.

Trends that I think will continue in 2013 include:

Growing attention to machine-generated data. Human-generated data grows at the rate business activity does, plus 0-25%. Machine-generated data grows at the rate of Moore’s Law, also plus 0-25%, which is a much higher total. In particular, the use of remote machine-generated data is becoming increasingly real.

Hadoop adoption. Everybody has the big bit bucket use case, largely because of machine-generated data. Even today’s technology is plenty good enough for that purpose, and hence justifies initial Hadoop adoption. Development of further Hadoop technology, which I post about frequently, is rapid. And so the Hadoop trend is very real.

Application SaaS. The on-premises application software industry has hopeless problems with product complexity and rigidity. Any suite new enough to cut the Gordian Knot is or will be SaaS (Software as a Service).

Newer BI interfaces. Advanced visualization — e.g. Tableau or QlikView — and mobile BI are both hot. So, more speculatively, are “social” BI (Business Intelligence) interfaces.

Price discounts. If you buy software at 50% of list price, you’re probably doing it wrong. Even 25% can be too high.

MySQL alternatives.  NoSQL and NewSQL products often are developed as MySQL alternatives. Oracle has actually done a good job on MySQL technology, but now its business practices are scaring companies away from MySQL commitments, and newer short-request SQL DBMS are ready for use.

Read more

August 7, 2012

Notes on some basic database terminology

In a call Monday with a prominent company, I was told:

That, to put it mildly, is not accurate. So I shall try, yet again, to set the record straight.

In an industry where people often call a DBMS just a “database” — so that a database is something that manages a database! — one may wonder why I bother. Anyhow …

1. The products commonly known as Oracle, Exadata, DB2, Sybase, SQL Server, Teradata, Sybase IQ, Netezza, Vertica, Greenplum, Aster, Infobright, SAND, ParAccel, Exasol, Kognitio et al. all either are or incorporate relational database management systems, aka RDBMS or relational DBMS.

2. In principle, there can be difficulties in judging whether or not a DBMS is “relational”. In practice, those difficulties don’t arise — yet. Every significant DBMS still falls into one of two categories:

*I expect the distinction to get more confusing soon, at which point I’ll adopt terms more precise than “relational things” and “relational stuff”.

3. There are two chief kinds of relational DBMS: Read more

August 6, 2012

Notes, links and comments August 6, 2012

I haven’t done a notes/link/comments post for a while. Time for a little catch-up.

1. MySQL now has a memcached integration story. I haven’t checked the details. The MySQL team is pretty hard to talk with, due to the heavy-handedness of Oracle’s analyst relations.

2. The Large Hadron Collider offers some serious numbers, including:

3. One application area we don’t talk about much for analytic technologies is education. However: Read more

July 25, 2012

SQL Server to MySQL migration — why?

Oracle wants you to help you migrate from Microsoft SQL Server to MySQL. I was asked for comment, and replied:

Am I missing anything?

July 18, 2012

Clustrix 4.0 and other Clustrix stuff

It feels like time to write about Clustrix, which I last covered in detail in May, 2010, and which is releasing Clustrix 4.0 today. Clustrix and Clustrix 4.0 basics include:

The biggest Clustrix installation seems to be 20 nodes or so. Others seem to have 10+. I presume those disaster recovery customers have 6 or more nodes each. I’m not quite sure how the arithmetic on that all works; perhaps the 125ish count of nodes is a bit low.

Clustrix technical notes include: Read more

June 14, 2012

Workday update

In August 2010, I wrote about Workday’s interesting technical architecture, highlights of which included:

I caught up with Workday recently, and things have naturally evolved. Most of what we talked about (by my choice) dealt with data management, business intelligence, and the overlap between the two.

It is now reasonable to say that Workday’s servers fall into at least seven tiers, although we talked mainly about five that work together as a kind of giant app/database server amalgamation. The three that do noteworthy data management can be described as:

Two other Workday server tiers may be described as: Read more

April 7, 2012

Many kinds of memory-centric data management

I’m frequently asked to generalize in some way about in-memory or memory-centric data management. I can start:

Getting more specific than that is hard, however, because:

Consider, for example, some of the in-memory data management ideas kicking around. Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:


Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.