MOLAP

Analysis of MOLAP (Multidimensional OnLine Analytic Processing) products and vendors. Related subjects include:

October 30, 2009

A question on MDX performance

An enterprise user wrote in with a question that boils down to:

What are reasonable MDX performance expectations?

MDX doesn’t come up in my life very much, and I don’t have much intuition about it. E.g., I don’t know whether one can slap an MDX-to-SQL converter on top of a fast analytic RDBMS and go to town. What’s more, I’m heading off on vacation and don’t feel like researching the matter myself in the immediate future. :)

So here’s the long form of the question. Any thoughts?

I have a general question on assessing the performance of an OLAP technology using a set of MDX queries. I would be interested to know if there are any benchmark MDX performance tests/results comparing different OLAP technologies (which may be based on different underlying DBMS’s if appropriate) on similar hardware setup, or even comparisons of complete appliance solutions. More generally, I want to determine what performance limits I could reasonably expect on what I think are fairly standard servers.

In my own work, I have set up a star schema model centered on a Fact table of 100 million rows (approx 60 columns), with dimensions ranging in cardinality from 5 to 10,000. In ad hoc analytics, is it expected that any query against such a dataset should return a result within a minute or two (i.e. before a user gets impatient), regardless of whether that query returns 100 cells or 50,000 cells (without relying on any aggregate table or caching mechanism)? Or is that level of performance only expected with a high end massively parallel software/hardware solution? The server specs I’m testing with are: 32-bit 4 core, 4GB RAM, 7.2k RPM SATA drive, running Windows Server 2003; 64-bit 8 core, 32GB RAM, 3 Gb/s SAS drive, running Windows Server 2003 (x64).

I realise that caching of query results and pre-aggregation mechanisms can significantly improve performance, but I’m coming from the viewpoint that in purely exploratory analytics, it is not possible to have all combinations of dimensions calculated in advance, in addition to being maintained.

April 22, 2009

Clearing some of my buffer

I have a large number of posts still in backlog.  For starters, there are ones based on recent visits with Aster, Greenplum, Sybase, Vertica, and a Very Large User.  I suspect I’ll write more soon on Oracle as well.  Plus there’s my whole future-of-online-media area.  And quite a bit more will grow out of planned research.

So there are a whole lot of other worthy subjects I doubt I’ll be getting to any time soon.  In some cases, of course, other people are doing great jobs of writing about same. Here are pointers to a few links that I am glad to recommend:

March 25, 2009

Aleri update

My skeptical remarks on the Aleri/Coral8 merger generated some pushback. Today I actually got around to talking with John Morell, who was marketing chief at Coral8 and has remained with the combined company. First, some quick metrics:

John is sticking by the company line that there will be an integrated Aleri/Coral8 engine in around 12 months, with all the performance optimization of Aleri and flexibility of Coral8, that compiles and runs code from any of the development tools either Aleri or Coral8 now has. While this is a lot faster than, say, the Informix/Illustra or Oracle/IRI Express integrations, John insists that integrating CEP engines is a lot easier. We’ll see.

I focused most of the conversation on Aleri’s forthcoming efforts outside the financial services market. John sees these as being focused around Coral8′s old “Continuous (Business) Intelligence” message, enhanced by Aleri’s Live OLAP. Aleri Live OLAP is an in-memory OLAP engine, real-time/event-driven, fed by CEP. Queries can be submitted via ODBO/MDX today. XMLA is coming. John reports that quite a few Coral8 customers are interested in Live OLAP, and positions the capability as one Coral8 would have had to develop had the company remained independent. Read more

February 7, 2009

Analytics’ role in a frightening economy

I chatted yesterday with the general business side (as opposed to the trading operation) of a household-name brokerage firm, one that’s in no immediate financial peril. It seems their #1 analytic-technology priority right now is changing planning from an annual to a monthly cycle.* That’s a smart idea. While it’s especially important in their business, larger enterprises of all kinds should consider following suit. Read more

February 3, 2009

EMC’s take on data warehousing and BI

I just ran across a December 10 blog post by Chuck Hollis outlining some of EMC’s — or at least Chuck’s — views on data warehousing and business intelligence. It’s worth scanning, a certain “Where you stand depends upon where you sit” flavor to it notwithstanding.  In a contrast to my usual blogging style, Chuck’s post is excerpted at length below, with comments from me interspersed. Read more

January 28, 2009

More Oracle notes

When I went to Oracle in October, the main purpose of the visit was to discuss Exadata. And so my initial post based on the visit was focused accordingly. But there were a number of other interesting points I’ve never gotten around to writing up. Let me now remedy that, at least in part. Read more

September 25, 2008

Other notes on Oracle data warehousing

Obviously, the big news this week is Exadata, and its parallelization or lack thereof. But let’s not forget the rest of Oracle’s data warehousing technology.

  1. Frankly, I’ve come to think that disk-based OLAP cubes and materialized views are both cop-outs, indicative of a relational data warehouse architecture that can’t answer queries quickly enough straight-up. But if you disagree, then you might like Oracle’s new OLAP cube materialized views, which sound like a worthy competitor to Microsoft Analysis Services. (Further confusing things, I’ve seen reports that Oracle is increasing its commitment to Essbase, a separate MOLAP engine. I hope those are incorrect.)
  2. A few weeks ago, I came to realize that Oracle’s data mining database features actually mattered — perhaps not quite as much as Charlie Berger might think, but to say that is to praise with faint damns. ;) SPSS seems to be getting large performance gains from leveraging the scoring part, and perhaps the transformation part as well. I haven’t focused on getting my details right yet, so I haven’t been writing about it. But heck, with all the other Oracle data warehousing discussion, it seems right to at least mention this part too.
September 6, 2007

Applix – Three huge opportunities Cognos will probably ignore

If I weren’t on a snorkeling vacation,* this might be a good time to write about why I once called Cognos “The Gang That Couldn’t Shoot Straight,” how Ron Zambonini used that label to help him gain the company’s top spot, why he’s such a big fan of mine, why I got my highest ever per-minute speaking fee to attend a Cognos sales kickoff event, why I went for a midnight touristing stroll in downtown Ottawa in zero degree Fahrenheit weather, or how I managed, while attending the aforementioned Cognos sales kickoff, to get snowed in for three days in, of all places, Dallas, Texas. But the wrasses and jacks await, so I’ll get straight to the point.

*Albeit fairly snorkel-free so far, thanks to Hurricane Felix. :(

As I discussed at considerable length in a white paper, Applix’s core technology is fully-featured, memory-centric MOLAP. This is certainly cool technology, and I think it is actually unique. That it’s historically been positioned as the engine for a mid-range set of performance management tools is a travesty, a shame, the result of a prior merger – and also the quite understandable consequence of RAM limitations. However, RAM is ever cheaper and Applix’s technology is now 64-bit, so the RAM barriers have been relaxed. Cognos can take Applix’s TM1 engine high-end if it wants to. And boy, should Cognos ever want to. Indeed, there are three different great ways Cognos could package and position TM1:

  1. As a no-data-warehouse-design quick-start analytics engine analogous to QlikView (the fastest-growing and most important newish BI suite, open source perhaps excepted);
  2. As the most sophisticated and versatile planning tool this side of SAP’s APO (and while APO’s sophistication is not in dispute, its versatility is questionable anyway);
  3. As the processing hub for dashboards-done-right.

Read more

March 1, 2007

How Hyperion will change Oracle

Oracle is evidently buying Hyperion Software. Much like Gaul, Hyperion can be divided into three parts:

The most important part is budgeting/planning, because it could help Oracle change the rules for application software. But Essbase could be just the nudge Oracle needs to finally renounce its one-server-fits-all dogma.
Read more

October 4, 2006

SAS Intelligence Storage

SAS has its own data store, called SAS Intelligence Storage. It’s a relational system running on SMP boxes, whose unique feature is that it has fixed-length records and hence is a perfect array, for speedy lookup. This is highly analogous to classical MOLAP systems. However, SAS reports that customers store up to several hundred terabytes of data in SAS Intelligence Storage, which is definitely not very analogous to what goes on in the MOLAP world.

It sounds as if the product is optimized for data mining and generic OLAP alike. Indeed, SAS Intelligence Storage is used to power both SAS’s data mining and other advanced analytics, and also its more conventional BI suite.

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.