Discussion of NoSQL concepts, products, and vendors.

December 10, 2015

Readings in Database Systems

Mike Stonebraker and Larry Ellison have numerous things in common. If nothing else:

I mention the latter because there’s a new edition of Readings in Database Systems, aka the Red Book, available online, courtesy of Mike, Joe Hellerstein and Peter Bailis. Besides the recommended-reading academic papers themselves, there are 12 survey articles by the editors, and an occasional response where, for example, editors disagree. Whether or not one chooses to tackle the papers themselves — and I in fact have not dived into them — the commentary is of great interest.

But I would not take every word as the gospel truth, especially when academics describe what they see as commercial market realities. In particular, as per my quip in the first paragraph, the data warehouse market has not yet gone to the extremes that Mike suggests,* if indeed it ever will. And while Joe is close to correct when he says that the company Essbase was acquired by Oracle, what actually happened is that Arbor Software, which made Essbase, merged with Hyperion Software, and the latter was eventually indeed bought by the giant of Redwood Shores.**

*When it comes to data warehouse market assessment, Mike seems to often be ahead of the trend.

**Let me interrupt my tweaking of very smart people to confess that my own commentary on the Oracle/Hyperion deal was not, in retrospect, especially prescient.

Mike pretty much opened the discussion with a blistering attack against hierarchical data models such as JSON or XML. To a first approximation, his views might be summarized as:  Read more

October 15, 2015

Cassandra and privacy requirements

For starters:

But when I made that connection and checked in accordingly with my client Patrick McFadin at DataStax, I discovered that I’d been a little confused about how multi-data-center Cassandra works. The basic idea holds water, but the details are not quite what I was envisioning.

The story starts:

In particular, a remote replication factor for Cassandra can = 0. When that happens, then you have data sitting in one geographical location that is absent from another geographical location; i.e., you can be in compliance with laws forbidding the export of certain data. To be clear (and this contradicts what I previously believed and hence also implied in this blog):

Read more

October 15, 2015

Basho and Riak

Basho was on my (very short) blacklist of companies with whom I refuse to speak, because they have lied about the contents of previous conversations. But Tony Falco et al. are long gone from the company. So when Basho’s new management team reached out, I took the meeting.

For starters:

Basho’s product line has gotten a bit confusing, but as best I understand things the story is:

Technical notes on some of that include:  Read more

October 15, 2015

Couchbase 4.0 and related subjects

I last wrote about Couchbase in November, 2012, around the time of Couchbase 2.0. One of the many new features I mentioned then was secondary indexing. Ravi Mayuram just checked in to tell me about Couchbase 4.0. One of the important new features he mentioned was what I think he said was Couchbase’s “first version” of secondary indexing. Obviously, I’m confused.

Now that you’re duly warned, let me remind you of aspects of Couchbase timeline.

Technical notes on Couchbase 4.0 — and related riffs :) — start: Read more

September 14, 2015

DataStax and Cassandra update

MongoDB isn’t the only company I reached out to recently for an update. Another is DataStax. I chatted mainly with Patrick McFadin, somebody with whom I’ve had strong consulting relationships at a user and vendor both. But Rachel Pedreschi contributed the marvelous phrase “twinkling dashboard”.

It seems fair to say that in most cases:

Those generalities, in my opinion, make good technical sense. Even so, there are some edge cases or counterexamples, such as:

*And so a gas company is doing lightweight analysis on boiler temperatures, which it regards as hot data. :)

While most of the specifics are different, I’d say similar things about MongoDB, Cassandra, or any other NoSQL DBMS that comes to mind: Read more

September 10, 2015

MongoDB update

One pleasure in talking with my clients at MongoDB is that few things are NDA. So let’s start with some numbers:

Also >530 staff, and I think that number is a little out of date.

MongoDB lacks many capabilities RDBMS users take for granted. MongoDB 3.2, which I gather is slated for early November, narrows that gap, but only by a little. Features include:

There’s also a closed-source database introspection tool coming, currently codenamed MongoDB Scout.  Read more

July 7, 2015

Zoomdata and the Vs

Let’s start with some terminology biases:

So when my clients at Zoomdata told me that they’re in the business of providing “the fastest visual analytics for big data”, I understood their choice, but rolled my eyes anyway. And then I immediately started to check how their strategy actually plays against the “big data” Vs.

It turns out that:

*The HDFS/S3 aspect seems to be a major part of Zoomdata’s current story.

Core aspects of Zoomdata’s technical strategy include:  Read more

May 26, 2015

IT-centric notes on the future of health care

It’s difficult to project the rate of IT change in health care, because:

Timing aside, it is clear that health care change will be drastic. The IT part of that starts with vastly comprehensive electronic health records, which will be accessible (in part or whole as the case may be) by patients, care givers, care payers and researchers alike. I expect elements of such records to include:

These vastly greater amounts of data cited above will allow for greatly changed analytics.
Read more

April 9, 2015

Which analytic technology problems are important to solve for whom?

I hear much discussion of shortfalls in analytic technology, especially from companies that want to fill in the gaps. But how much do these gaps actually matter? In many cases, that depends on what the analytic technology is being used for. So let’s think about some different kinds of analytic task, and where they each might most stress today’s available technology.

In separating out the task areas, I’ll focus first on the spectrum “To what extent is this supposed to produce novel insights?” and second on the dimension “To what extent is this supposed to be integrated into a production/operational system?” Issues of latency, algorithmic novelty, etc. can follow after those. In particular, let’s consider the tasks: Read more

March 17, 2015

More notes on HBase

1. Continuing from last week’s HBase post, the Cloudera folks were fairly proud of HBase’s features for performance and scalability. Indeed, they suggested that use cases which were a good technical match for HBase were those that required fast random reads and writes with high concurrency and strict consistency. Some of the HBase architecture for query performance seems to be:

Notwithstanding that a couple of those features sound like they might help with analytic queries, the base expectation is that you’ll periodically massage your HBase data into a more analytically-oriented form. For example — I was talking with Cloudera after all — you could put it into Parquet.

2. The discussion of which kinds of data are originally put into HBase was a bit confusing.

OpenTSDB, by the way, likes to store detailed data and aggregates side-by-side, which resembles a pattern I discussed in my recent BI for NoSQL post.

3. HBase supports caching, tiered storage, and so on. Cloudera is pretty sure that it is publicly known (I presume from blog posts or conference talks) that:  Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:


Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.