April 14, 2013

Introduction to Deep Information Sciences and DeepDB

I talked Friday with Deep Information Sciences, makers of DeepDB. Much like TokuDB — albeit with different technical strategies — DeepDB is a single-server DBMS in the form of a MySQL engine, whose technology is concentrated around writing indexes quickly. That said:

*For reasons that do not seem closely related to product reality, DeepDB is marketed as if it supports “unstructured” data today.

Other NewSQL DBMS seem “designed for big data and the cloud” to at least the same extent DeepDB is. However, if we’re interpreting “big data” to include multi-structured data support — well, only half or so of the NewSQL products and companies I know of share Deep’s interest in branching out. In particular:

Edit: MySQL has some sort of an optional NoSQL interface, and hence so presumably do MySQL-compatible TokuDB, GenieDB, Clustrix, and MemSQL.

Also, some of those products do not today have the transparent scale-out that Deep plans to offer in the future.

Read more

April 1, 2013

Some notes on new-era data management, March 31, 2013

Hmm. I probably should have broken this out as three posts rather than one after all. Sorry about that.

Performance confusion

Discussions of DBMS performance are always odd, for starters because:

But in NoSQL/NewSQL short-request processing performance claims seem particularly confused. Reasons include but are not limited to:

MongoDB and 10gen

I caught up with Ron Avnur at 10gen. Technical highlights included: Read more

March 26, 2013

Platfora at the time of first GA

Well-resourced Silicon Valley start-ups typically announce their existence multiple times. Company formation, angel funding, Series A funding, Series B funding, company launch, product beta, and product general availability may not be 7 different “news events”, but they’re apt to be at least 3-4. Platfora, no exception to this rule, is hitting general availability today, and in connection with that I learned a bit more about what they are up to.

In simplest terms, Platfora offers exploratory business intelligence against Hadoop-based data. As per last weekend’s post about exploratory BI, a key requirement is speed; and so far as I can tell, any technological innovation Platfora offers relates to the need for speed. Specifically, I drilled into Platfora’s performance architecture on the query processing side (and associated data movement); Platfora also brags of rendering 100s of 1000s of “marks” quickly in HTML5 visualizations, but I haven’t a clue as to whether that’s much of an accomplishment in itself.

Platfora’s marketing suggests it obviates the need for a data warehouse at all; for most enterprises, of course, that is a great exaggeration. But another dubious aspect of Platfora marketing actually serves to understate the product’s merits — Platfora claims to have an “in-memory” product, when what’s really the case is that Platfora’s memory-centric technology uses both RAM and disk to manage larger data marts than could reasonably be fit into RAM alone. Expanding on what I wrote about Platfora when it de-stealthedRead more

February 27, 2013

Hadoop distributions

Elephants! Elephants!
One elephant went out to play
Sat on a spider’s web one day.
They had such enormous fun
Called for another elephant to come.

Elephants! Elephants!
Two elephants went out to play
Sat on a spider’s web one day.
They had such enormous fun
Called for another elephant to come.

Elephants! Elephants!
Three elephants went out to play
Etc.

—  Popular children’s song

It’s Strata week, with much Hadoop news, some of which I’ve been briefed on and some of which I haven’t. Rather than delve into fine competitive details, let’s step back and consider some generalities. First, about Hadoop distributions and distro providers:

Most of the same observations could apply to Hadoop appliance vendors.

Read more

February 22, 2013

Should you offer “complete” analytic applications?

WibiData is essentially on the trajectory:

The same, it turns out, is true of Causata.* Talking with them both the same day led me to write this post. Read more

February 17, 2013

Notes and links, February 17, 2013

1. It boggles my mind that some database technology companies still don’t view compression as a major issue. Compression directly affects storage and bandwidth usage alike — for all kinds of storage (potentially including RAM) and for all kinds of bandwidth (network, I/O, and potentially on-server).

Trading off less-than-maximal compression so as to minimize CPU impact can make sense. Having no compression at all, however, is an admission of defeat.

2. People tend to misjudge Hadoop’s development pace in either of two directions. An overly expansive view is to note that some people working on Hadoop are trying to make it be all things for all people, and to somehow imagine those goals will soon be achieved. An overly narrow view is to note an important missing feature in Hadoop, and think there’s a big business to be made out of offering it alone.

At this point, I’d guess that Cloudera and Hortonworks have 500ish employees combined, many of whom are engineers. That allows for a low double-digit number of 5+ person engineering teams, along with a number of smaller projects. The most urgently needed features are indeed being built. On the other hand, a complete monument to computing will not soon emerge.

3. Schooner’s acquisition by SanDisk has led to the discontinuation of Schooner’s SQL DBMS SchoonerSQL. Schooner’s flash-optimized key-value store Membrain continues. I don’t have details, but the Membrain web page suggests both data store and cache use cases.

4. There’s considerable personnel movement at Boston-area database technology companies right now. Please ping me directly if you care.

Read more

February 5, 2013

Comments on Gartner’s 2012 Magic Quadrant for Data Warehouse Database Management Systems — evaluations

To my taste, the most glaring mis-rankings in the 2012/2013 Gartner Magic Quadrant for Data Warehouse Database Management are that it is too positive on Kognitio and too negative on Infobright. Secondarily, it is too negative on HP Vertica, and too positive on ParAccel and Actian/VectorWise. So let’s consider those vendors first.

Gartner seems confused about Kognitio’s products and history alike.

Gartner is correct, however, to note that Kognitio doesn’t sell much stuff overall.

* non-existent

In the cases of HP Vertica, Infobright, ParAccel, and Actian/VectorWise, the 2012 Gartner Magic Quadrant for Data Warehouse Database Management’s facts are fairly accurate, but I dispute Gartner’s evaluation. When it comes to Vertica: Read more

February 5, 2013

Comments on Gartner’s 2012 Magic Quadrant for Data Warehouse Database Management Systems — concepts

The 2012 Gartner Magic Quadrant for Data Warehouse Database Management Systems is out. I’ll split my comments into two posts — this one on concepts, and a companion on specific vendor evaluations.

Links:

Let’s start by again noting that I regard Gartner Magic Quadrants as a bad use of good research. On the facts:

When it comes to evaluations, however, the Gartner Data Warehouse DBMS Magic Quadrant doesn’t do as well. My concerns (which overlap) start:

Read more

January 15, 2013

Tokutek update

Alternate title: TokuDB updates :)

Now that I’ve addressed some new NewSQL entrants, namely NuoDB and GenieDB, it’s time to circle back to some more established ones. First up are my clients at Tokutek, about whom I recently wrote:

Tokutek turns a performance argument into a functionality one. In particular, Tokutek claims that TokuDB does a much better job than alternatives of making it practical for you to update indexes at OLTP speeds. Hence, it claims to do a much better job than alternatives of making it practical for you to write and execute queries that only make sense when indexes (or other analytic performance boosts) are in place.

That’s all been true since I first wrote about Tokutek and TokuDB in 2009. However, TokuDB’s technical details have changed. In particular, Tokutek has deemphasized the ideas that:

Rather, Tokutek’s new focus for getting the same benefits is to provide a separate buffer for each node of a b-tree. In essence, Tokutek is taking the usual “big blocks are better” story and extending it to indexes. TokuDB also uses block-level compression. Notes on that include: Read more

January 7, 2013

Introduction to GenieDB

GenieDB is one of the newer and smaller NewSQL companies. GenieDB’s story is focused on wide-area replication and uptime, coupled to claims about ease and the associated low TCO (Total Cost of Ownership).

GenieDB is in my same family of clients as Cirro.

The GenieDB product is more interesting if we conflate the existing GenieDB Version 1 and a soon-forthcoming (mid-year or so) Version 2. On that basis:

The heart of the GenieDB story is probably wide-area replication. Specifics there include:  Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.