Vertica Systems

Analysis of columnar data warehouse DBMS vendor Vertica Systems. Related subjects include:

April 29, 2013

More on Actian/ParAccel/VectorWise/Versant/etc.

My quick reaction to the Actian/ParAccel deal was negative. A few challenges to my views then emerged. They didn’t really change my mind.

Amazon Redshift

Amazon did a deal with ParAccel that amounted to:

Some argue that this is great for ParAccel’s future prospects. I’m not convinced.

No doubt there are and will be Redshift users, evidently including Infor. But so far as I can tell, Redshift uses very standard SQL, so it doesn’t seed a ParAccel market in terms of developer habits. The administration/operation story is similar. So outside of general validation/bragging rights, Redshift is not a big deal for ParAccel.

OEMs and bragging rights

It’s not just Amazon and Infor; there’s also a MicroStrategy deal to OEM ParAccel — I think it’s the real ParAccel software in that case — for a particular service, MicroStrategy Wisdom. But unless I’m terribly mistaken, HP Vertica, Sybase IQ and even Infobright each have a lot more OEMs than ParAccel, just as they have a lot more customers than ParAccel overall.

This OEM success is a great validation for the idea of columnar analytic RDBMS in general, but I don’t see where it’s an advantage for ParAccel vs. the columnar leaders. Read more

April 25, 2013

Goodbye VectorWise, farewell ParAccel?

Actian, which already owns VectorWise, is also buying ParAccel. The argument for why this kills VectorWise is simple. ParAccel does most things VectorWise does, more or less as well. It also does a lot more:

One might conjecture that ParAccel is bad at highly concurrent, single-node use cases, and VectorWise is better at them — but at the link above, ParAccel bragged of supporting 5,000 concurrent connections. Besides, if one is just looking for a high-use reporting server, why not get Sybase IQ?? Anyhow, Actian hasn’t been investing enough in VectorWise to make it a major market player, and they’re unlikely to start now that they own ParAccel as well.

But I expect ParAccel to fail too. Reasons include:

Read more

February 5, 2013

Comments on Gartner’s 2012 Magic Quadrant for Data Warehouse Database Management Systems — evaluations

To my taste, the most glaring mis-rankings in the 2012/2013 Gartner Magic Quadrant for Data Warehouse Database Management are that it is too positive on Kognitio and too negative on Infobright. Secondarily, it is too negative on HP Vertica, and too positive on ParAccel and Actian/VectorWise. So let’s consider those vendors first.

Gartner seems confused about Kognitio’s products and history alike.

Gartner is correct, however, to note that Kognitio doesn’t sell much stuff overall.

* non-existent

In the cases of HP Vertica, Infobright, ParAccel, and Actian/VectorWise, the 2012 Gartner Magic Quadrant for Data Warehouse Database Management’s facts are fairly accurate, but I dispute Gartner’s evaluation. When it comes to Vertica: Read more

December 9, 2012

Amazon Redshift and its implications

Merv Adrian and Doug Henschen both reported more details about Amazon Redshift than I intend to; see also the comments on Doug’s article. I did talk with Rick Glick of ParAccel a bit about the project, and he noted:

“We didn’t want to do the deal on those terms” comments from other companies suggest ParAccel’s main financial take from the deal is an already-reported venture investment.

The cloud-related engineering was mainly around communications, e.g. strengthening error detection/correction to make up for the lack of dedicated switches. In general, Rick seemed more positive on running in the (Amazon) cloud than analytic RDBMS vendors have been in the past.

So who should and will use Amazon Redshift? For starters, I’d say: Read more

September 27, 2012

Hoping for true columnar storage in Oracle12c

I was asked to clarify one of my July comments on Oracle12c,

I wonder whether Oracle will finally introduce a true columnar storage option, a year behind Teradata. That would be the obvious enhancement on the data warehousing side, if they can pull it off. If they can’t, it’s a damning commentary on the core Oracle codebase.

by somebody smart who however seemed to have half-forgotten my post comparing (hybrid) columnar compression to (hybrid) columnar storage.

In simplest terms:

August 26, 2012

How immediate consistency works

This post started as a minor paragraph in another one I’m drafting. But it grew. Please also see the comment thread below.

Increasingly many data management systems store data in a cluster, putting several copies of data — i.e. “replicas” — onto different nodes, for safety and reliable accessibility. (The number of copies is called the “replication factor”.) But how do they know that the different copies of the data really have the same values? It seems there are three main approaches to immediate consistency, which may be called:

I shall explain.

Two-phase commit has been around for decades. Its core idea is:

Unless a piece of the system malfunctions at exactly the wrong time, you’ll get your consistent write. And if there indeed is an unfortunate glitch — well, that’s what recovery is for.

But 2PC has a flaw: If a node is inaccessible or down, then the write is blocked, even if other parts of the system were able to accept the data safely. So the NoSQL world sometimes chooses RYW consistency, which in essence is a loose form of 2PC: Read more

August 19, 2012

In-database analytics — analytic glossary draft entry

This is a draft entry for the DBMS2 analytic glossary. Please comment with any ideas you have for its improvement!

Note: Words and phrases in italics will be linked to other entries when the glossary is complete.

“In-database analytics” is a catch-all term for analytic capabilities, beyond standard SQL, running on the same machine as and under the management of an analytic DBMS. These can run in one or both of two modes:

In-database analytics may offer great performance and scalability advantages versus the alternative of extracting data and having it be processed on a separate server. This is particularly likely to be the case in MPP (Massively Parallel Processing) analytic DBMS environments.

Examples of in-database analytics include:

Other common domains for in-database analytics include sessionization, time series analysis, and relationship analytics.

Notable products offering in-database analytics include:

August 19, 2012

Analytic platform — analytic glossary draft entry

This is a draft entry for the DBMS2 analytic glossary. Please comment with any ideas you have for its improvement!

Note: Words and phrases in italics will be linked to other entries when the glossary is complete.

In our usage, an “analytic platform” is an analytic DBMS with well-integrated in-database analytics, or a data warehouse appliance that includes one. The term is also sometimes used to refer to:

To varying extents, most major vendors of analytic DBMS or data warehouse appliances have extended their products into analytic platforms; see, for example, our original coverage of analytic platform versions of as Aster, Netezza, or Vertica.

Related posts

August 7, 2012

Notes on some basic database terminology

In a call Monday with a prominent company, I was told:

That, to put it mildly, is not accurate. So I shall try, yet again, to set the record straight.

In an industry where people often call a DBMS just a “database” — so that a database is something that manages a database! — one may wonder why I bother. Anyhow …

1. The products commonly known as Oracle, Exadata, DB2, Sybase, SQL Server, Teradata, Sybase IQ, Netezza, Vertica, Greenplum, Aster, Infobright, SAND, ParAccel, Exasol, Kognitio et al. all either are or incorporate relational database management systems, aka RDBMS or relational DBMS.

2. In principle, there can be difficulties in judging whether or not a DBMS is “relational”. In practice, those difficulties don’t arise — yet. Every significant DBMS still falls into one of two categories:

*I expect the distinction to get more confusing soon, at which point I’ll adopt terms more precise than “relational things” and “relational stuff”.

3. There are two chief kinds of relational DBMS: Read more

July 28, 2012

Some Vertica 6 features

Vertica 6 was recently announced, and so it seemed like a good time to catch up on Vertica features. The main topics I want to address are:

Also:

In general, the main themes of Vertica 6 appear to be:

Let’s do the analytic functionality first. Notes on that include:

I’ll also take this opportunity to expand on something I wrote about a few vendors — including Vertica — at the end of my post on approximate query results. When I probed how customers of Vertica and other RDBMS-based analytic platform vendors used vendor-proprietary advanced analytic SQL and other analytic capabilities, answers included: Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.