Vertica Systems

Analysis of columnar data warehouse DBMS vendor Vertica Systems. Related subjects include:

December 9, 2012

Amazon Redshift and its implications

Merv Adrian and Doug Henschen both reported more details about Amazon Redshift than I intend to; see also the comments on Doug’s article. I did talk with Rick Glick of ParAccel a bit about the project, and he noted:

“We didn’t want to do the deal on those terms” comments from other companies suggest ParAccel’s main financial take from the deal is an already-reported venture investment.

The cloud-related engineering was mainly around communications, e.g. strengthening error detection/correction to make up for the lack of dedicated switches. In general, Rick seemed more positive on running in the (Amazon) cloud than analytic RDBMS vendors have been in the past.

So who should and will use Amazon Redshift? For starters, I’d say: Read more

September 27, 2012

Hoping for true columnar storage in Oracle12c

I was asked to clarify one of my July comments on Oracle12c,

I wonder whether Oracle will finally introduce a true columnar storage option, a year behind Teradata. That would be the obvious enhancement on the data warehousing side, if they can pull it off. If they can’t, it’s a damning commentary on the core Oracle codebase.

by somebody smart who however seemed to have half-forgotten my post comparing (hybrid) columnar compression to (hybrid) columnar storage.

In simplest terms:

August 26, 2012

How immediate consistency works

This post started as a minor paragraph in another one I’m drafting. But it grew. Please also see the comment thread below.

Increasingly many data management systems store data in a cluster, putting several copies of data — i.e. “replicas” — onto different nodes, for safety and reliable accessibility. (The number of copies is called the “replication factor”.) But how do they know that the different copies of the data really have the same values? It seems there are three main approaches to immediate consistency, which may be called:

I shall explain.

Two-phase commit has been around for decades. Its core idea is:

Unless a piece of the system malfunctions at exactly the wrong time, you’ll get your consistent write. And if there indeed is an unfortunate glitch — well, that’s what recovery is for.

But 2PC has a flaw: If a node is inaccessible or down, then the write is blocked, even if other parts of the system were able to accept the data safely. So the NoSQL world sometimes chooses RYW consistency, which in essence is a loose form of 2PC: Read more

August 19, 2012

In-database analytics — analytic glossary draft entry

This is a draft entry for the DBMS2 analytic glossary. Please comment with any ideas you have for its improvement!

Note: Words and phrases in italics will be linked to other entries when the glossary is complete.

“In-database analytics” is a catch-all term for analytic capabilities, beyond standard SQL, running on the same machine as and under the management of an analytic DBMS. These can run in one or both of two modes:

In-database analytics may offer great performance and scalability advantages versus the alternative of extracting data and having it be processed on a separate server. This is particularly likely to be the case in MPP (Massively Parallel Processing) analytic DBMS environments.

Examples of in-database analytics include:

Other common domains for in-database analytics include sessionization, time series analysis, and relationship analytics.

Notable products offering in-database analytics include:

August 19, 2012

Analytic platform — analytic glossary draft entry

This is a draft entry for the DBMS2 analytic glossary. Please comment with any ideas you have for its improvement!

Note: Words and phrases in italics will be linked to other entries when the glossary is complete.

In our usage, an “analytic platform” is an analytic DBMS with well-integrated in-database analytics, or a data warehouse appliance that includes one. The term is also sometimes used to refer to:

To varying extents, most major vendors of analytic DBMS or data warehouse appliances have extended their products into analytic platforms; see, for example, our original coverage of analytic platform versions of as Aster, Netezza, or Vertica.

Related posts

August 7, 2012

Notes on some basic database terminology

In a call Monday with a prominent company, I was told:

That, to put it mildly, is not accurate. So I shall try, yet again, to set the record straight.

In an industry where people often call a DBMS just a “database” — so that a database is something that manages a database! — one may wonder why I bother. Anyhow …

1. The products commonly known as Oracle, Exadata, DB2, Sybase, SQL Server, Teradata, Sybase IQ, Netezza, Vertica, Greenplum, Aster, Infobright, SAND, ParAccel, Exasol, Kognitio et al. all either are or incorporate relational database management systems, aka RDBMS or relational DBMS.

2. In principle, there can be difficulties in judging whether or not a DBMS is “relational”. In practice, those difficulties don’t arise — yet. Every significant DBMS still falls into one of two categories:

*I expect the distinction to get more confusing soon, at which point I’ll adopt terms more precise than “relational things” and “relational stuff”.

3. There are two chief kinds of relational DBMS: Read more

July 28, 2012

Some Vertica 6 features

Vertica 6 was recently announced, and so it seemed like a good time to catch up on Vertica features. The main topics I want to address are:


In general, the main themes of Vertica 6 appear to be:

Let’s do the analytic functionality first. Notes on that include:

I’ll also take this opportunity to expand on something I wrote about a few vendors — including Vertica — at the end of my post on approximate query results. When I probed how customers of Vertica and other RDBMS-based analytic platform vendors used vendor-proprietary advanced analytic SQL and other analytic capabilities, answers included: Read more

July 25, 2012

The eternal bogosity of performance marketing

Chris Kanaracus uncovered a case of Oracle actually pulling an ad after having been found “guilty” of false advertising. The essence seems to be that Oracle claimed 20X hardware performance vs. IBM, based on a comparison done against 6 year old hardware running an earlier version of the Oracle DBMS. My quotes in the article were:

Another example of Oracle exaggeration was around the Exadata replacement of Teradata at Softbank. But the bogosity flows both ways. Netezza used to make a flat claim of 50X better performance than Oracle, while Vertica’s standard press release boilerplate long boasted

50x-1000x faster performance at 30% the cost of traditional solutions

Of course, reality is a lot more complicated. Even if you assume apples-to-apples comparisons in terms of hardware and software versions, performance comparisons can vary greatly depending upon queries, databases, or use cases. For example:

And so, vendor marketing claims about across-the-board performance should be viewed with the utmost of suspicion.

Related links

July 19, 2012

A data distribution idea at Vertica and Clustrix

Yesterday I wrote:

Clustrix has one cool idea I haven’t heard from anybody else, which I’m calling index distribution. The idea is that each index can be distributed differently across the cluster …  i.e. on different distribution keys. Clustrix thinks that paying special attention to index distribution and movement is helpful to the performance of distributed joins.

While that’s true, I thought I’d heard something similar from Vertica; so I checked, and indeed I had. Vertica famously lets you store columns in different sort orders, in both reasonable senses:

It turns out those columns can also be distributed on different keys as well.

Related link

July 12, 2012

Approximate query results

In theory:

And so it would seem that query results always have to be exact. Even so, there are at least four different practical scenarios in which query results can reasonably be regarded as approximate, each associated with query languages that can supersede standard set-theoretic SQL.

Actually, there’s a fifth, and it’s a huge one — some fraction of your data is just plain wrong. But that’s not what this post is about.

First, some queries don’t have binary results, even in principle. Notably, text queries are answered via relevancy rankings, which fit badly into the relational model.

Second — and this can be combined with the first — you might want to generalize the query to look for partial matches. For example, Yarcdata suggested to me a scenario in which:

Similarly, if you’re looking for geographic proximity, it’s common to extend the allowed radius to fish for more results. Or one can walk up the hierarchy in a dimensional model.

Third, sometimes you just don’t have the data for any kind of precise answer at all. One adaptation I’ve mentioned before is to interpolate time series with synthetic data, and send back “precise” results based on that. In the same post I mentioned the Vertica “range join”, wherein users deliberately throw away part of their data — only storing the range it was in — and then join accordingly.

As Donald Rumsfeld might have said — and would have done well to reflect upon — you go into decision-making with the data you have, not the data you wish you had.

Finally, sometimes there’s a precise answer in principle, but for performance reasons you accept an approximate one, at least to start with. Numerous companies have told me stories around this, including:

The latter two categories led me to ask vendors how customers actually make use of their exotic SQL capabilities. Answers boiled down to:

Perhaps the answers will never get much better; it’s tough to get packaged software vendors to support vendor-specific SQL, unless the vendor is Oracle. Even so, we’re seeing ever more ways in which conventional SQL DBMS are being superseded by data management and analytic alternatives.

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:


Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.