SQL/Hadoop integration

Discussion of SQL-on-Hadoop and other forms of SQL/Hadoop integration.

August 6, 2013

Hortonworks, Hadoop, Stinger and Hive

I chatted yesterday with the Hortonworks gang. The main subject was Hortonworks’ approach to SQL-on-Hadoop — commonly called Stinger —  but at my request we cycled through a bunch of other topics as well. Company-specific notes include:

Our deployment and use case discussions were a little confused, because a key part of Hortonworks’ strategy is to support and encourage the idea of combining use cases and workloads on a single cluster. But I did hear:

*By the way — Teradata seems serious about pushing the UDA as a core message.

Ecosystem notes, in Hortonworks’ perception, included:

I also asked specifically about OpenStack. Hortonworks is a member of the OpenStack project, contributes nontrivially to Swift and other subprojects, and sees Rackspace as an important partner. But despite all that, I think strong Hadoop/OpenStack integration is something for the indefinite future.

Hortonworks’ views about Hadoop 2.0 start from the premise that its goal is to support running a multitude of workloads on a single cluster. (See, for example, what I previously posted about Tez and YARN.) Timing notes for Hadoop 2.0 include:

Frankly, I think Cloudera’s earlier and necessarily incremental Hadoop 2 rollout was a better choice than Hortonworks’ later big bang, even though the core-mission aspect of Hadoop 2.0 is what was least ready. HDFS (Hadoop Distributed File System) performance, NameNode failover and so on were well worth having, and it’s more than a year between Cloudera starting supporting them and when Hortonworks is offering Hadoop 2.0.

Hortonworks’ approach to doing SQL-on-Hadoop can be summarized simply as “Make Hive into as good an analytic RDBMS as possible, all in open source”. Key elements include:  Read more

June 23, 2013

Impala and Parquet

I visited Cloudera Friday for, among other things, a chat about Impala with Marcel Kornacker and colleagues. Highlights included:

Data gets into Parquet via batch jobs only — one reason it’s important that Impala run against multiple file formats — but background format conversion is another roadmap item. A single table can be split across multiple formats — e.g., the freshest data could be in HBase, with the rest is in Parquet.

Read more

June 6, 2013

Dave DeWitt responds to Daniel Abadi

A few days ago I posted Daniel Abadi’s thoughts in a discussion of Hadapt, Microsoft PDW (Parallel Data Warehouse)/PolyBase, Pivotal/Greenplum Hawq, and other SQL-Hadoop combinations. This is Dave DeWitt’s response. Emphasis mine.

Read more

June 2, 2013

SQL-Hadoop architectures compared

The genesis of this post is:

I love my life.

Per Daniel (emphasis mine): Read more

April 15, 2013

Teradata SQL-H

As vendors so often do, Teradata has caused itself some naming confusion. SQL-H was introduced as a facility of Teradata Aster, to complement SQL-MR.* But while SQL-MR is in essence a set of SQL extensions, SQL-H is not. Rather, SQL-H is a transparency interface that makes Hadoop data responsive to the same code that would work on Teradata Aster …

*Speaking of confusion — Teradata Aster seems to use the spellings SQL/MR and SQL-MR interchangeably.

… except that now there’s also a SQL-H for regular Teradata systems as well. While it has the same general features and benefits as SQL-H for Teradata Aster, the details are different, since the underlying systems are.

I hope that’s clear. :)

March 18, 2013

DBMS development and other subjects

The cardinal rules of DBMS development

Rule 1: Developing a good DBMS requires 5-7 years and tens of millions of dollars.

That’s if things go extremely well.

Rule 2: You aren’t an exception to Rule 1. 

In particular:

DBMS with Hadoop underpinnings …

… aren’t exceptions to the cardinal rules of DBMS development. That applies to Impala (Cloudera), Stinger (Hortonworks), and Hadapt, among others. Fortunately, the relevant vendors seem to be well aware of this fact. Read more

February 25, 2013

Greenplum HAWQ

My former friends at Greenplum no longer talk to me, so in particular I wasn’t briefed on Pivotal HD and Greenplum HAWQ. Pivotal HD seems to be yet another Hadoop distribution, with the idea that you use Greenplum’s management tools. Greenplum HAWQ seems to be Greenplum tied to HDFS.

The basic idea seems to be much like what I mentioned a few days ago  — the low-level file store for Greenplum can now be something else one has heard of before, namely HDFS (Hadoop Distributed File System, which is also an option for, say, NuoDB). Beyond that, two interesting quotes in a Greenplum blog post are:

When a query starts up, the data is loaded out of HDFS and into the HAWQ execution engine.

and

In addition, it has native support for HBase, supporting HBase predicate pushdown, hive[sic] connectivity, and offering a ton of intelligent features to retrieve HBase data.

The first sounds like the invisible loading that Daniel Abadi wrote about last September on Hadapt’s blog. (Edit: Actually, see Daniel’s comment below.) The second sounds like a good idea that, again, would also be a natural direction for vendors such as Hadapt.

December 13, 2012

Spark, Shark, and RDDs — technology notes

Spark and Shark are interesting alternatives to MapReduce and Hive. At a high level:

The key concept here seems to be the RDD. Any one RDD:

Otherwise, there’s a lot of flexibility; an RDD can be a set of tuples, a collection of XML documents, or whatever other reasonable kind of dataset you want. And I gather that:

Read more

December 13, 2012

Introduction to Spark, Shark, BDAS and AMPLab

UC Berkeley’s AMPLab is working on a software stack that:

The whole thing has $30 million in projected funding (half government, half industry) and a 6-year plan (which they’re 2 years into).

Specific projects of note in all that include:

Read more

November 1, 2012

More on Cloudera Impala

What I wrote before about Cloudera Impala was quite incomplete. After a followup call, I now feel I have a better handle on the whole thing.

First, some basics:

The general technical idea of Impala is:

Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.